280 research outputs found

    Climate change increases the risk of fisheries conflict

    Get PDF
    The effects of climate change on the ocean environment – especially ocean warming, acidification, and sea level rise – will impact fish stocks and fishers in important ways. Likely impacts include changes in fish stocks’ productivity and distribution, human migration to and away from coastal areas, stresses on coastal fisheries infrastructure, and challenges to prevailing maritime boundaries. In this paper, we explore these and other related phenomena, in order to assess whether and how the impacts of climate change on fisheries will contribute to the risk of fisheries conflict. We argue that climate change will entail an increase in the conditions that may precipitate fisheries conflict, and thereby create new challenges for existing fisheries management institutions. Several potential changes in fisheries management policy are recommended to avert the growing risk of fisheries-related conflicts

    A Global Estimate of the Number of Coral Reef Fishers

    Get PDF
    Abstract Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches -the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socioeconomic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale

    Дослідження «великого терору» у науково-документальній серії книг «Реабілітовані історією»

    Get PDF
    У статті автор аналізує результати дослідження «великого терору» 1937–1938 рр. у контексті реалізації Державної програми науково-документальної серії книг «Реабілітовані історією».В статье автор анализирует результаты исследования «большого террора» 1937–1938 гг. в контексте реализации Государственной программы научно-документальной серии книг «Реабилитированные историей».The author analyzes the results of a study of the «great terror» 1937–1938 in the context of implementing the State Program for Research, a documentary series of books «Rehabilitated history»

    Predicting the Impact of Climate Change on Threatened Species in UK Waters

    Get PDF
    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina)

    Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios

    Get PDF
    The ocean moderates anthropogenic climate change at the cost of profound alterations of its physics, chemistry, ecology, and services. Here, we evaluate and compare the risks of impacts on marine and coastal ecosystems and the goods and services they provide for growing cumulative carbon emissions under two contrasting emissions scenarios. The current emissions trajectory would rapidly and significantly alter many ecosystems and the associated services on which humans heavily depend. A reduced emissions scenario consistent with the Copenhagen Accord’s goal of a global temperature increase of less than 2°C—is much more favorable to the ocean but still substantially alters important marine ecosystems and associated goods and services. The management options to address ocean impacts narrow as the ocean warms and acidifies. Consequently, any new climate regime that fails to minimize ocean impacts would be incomplete and inadequate
    corecore