415 research outputs found

    Non-parabolicity of the conduction band of wurtzite GaN

    Full text link
    Using cyclotron resonance, we measure the effective mass, mm*, of electrons in AlGaN/GaN heterostructures with densities, n2D∼1−6×1012n_{2D}\sim 1-6\times10^{12}cm−2^{-2}. From our extensive data, we extrapolate a band edge mass of (0.208±0.002)me(0.208\pm0.002) m_e. By comparing our mm* data with the results of a multi-band \textbf{k.p} calculation we infer that the effect of remote bands is essential in explaining the observed conduction band non-parabolicity (NP). Our calculation of polaron mass corrections -- including finite width and screening - suggests those to be negligible. It implies that the behavior of m∗(n2D)m*(n_{2D}) can be understood solely in terms of NP. Finally, using our NP and polaron corrections, we are able to reduce the large scatter in the published band edge mass values

    Acoustic phonon scattering in a low density, high mobility AlGaN/GaN field effect transistor

    Full text link
    We report on the temperature dependence of the mobility, μ\mu, of the two-dimensional electron gas in a variable density AlGaN/GaN field effect transistor, with carrier densities ranging from 0.4×1012\times10^{12} cm−2^{-2} to 3.0×1012\times10^{12} cm−2^{-2} and a peak mobility of 80,000 cm2^{2}/Vs. Between 20 K and 50 K we observe a linear dependence μac−1=α\mu_{ac}^{-1} = \alphaT indicating that acoustic phonon scattering dominates the temperature dependence of the mobility, with α\alpha being a monotonically increasing function of decreasing 2D electron density. This behavior is contrary to predictions of scattering in a degenerate electron gas, but consistent with calculations which account for thermal broadening and the temperature dependence of the electron screening. Our data imply a deformation potential D = 12-15 eV.Comment: 3 pages, 2 figures, RevTeX. Submitted to Appl Phys Let

    Spin Susceptibility of a 2D Electron System in GaAs towards the Weak Interaction Region

    Full text link
    We determine the spin susceptibility χ\chi in the weak interaction regime of a tunable, high quality, two-dimensional electron system in a GaAs/AlGaAs heterostructure. The band structure effects, modifying mass and g-factor, are carefully taken into accounts since they become appreciable for the large electron densities of the weak interaction regime. When properly normalized, χ\chi decreases monotonically from 3 to 1.1 with increasing density over our experimental range from 0.1 to 4×1011cm−24\times10^{11} cm^{-2}. In the high density limit, χ\chi tends correctly towards χ→1\chi\to 1 and compare well with recent theory.Comment: Submitted to Physical Review

    Hysteresis and Spikes in the Quantum Hall Effect

    Full text link
    We observe sharp peaks and strong hysteresis in the electronic transport of a two-dimensional electron gas (2DEG) in the region of the integral quantum Hall effect. The peaks decay on time scales ranging from several minutes to more than an hour. Momentary grounding of some of the contacts can vastly modify the strength of the peaks. All these features disappear under application of a negative bias voltage to the backside of the specimen. We conclude, that a conduction channel parallel to the high mobility 2DEG is the origin for the peaks and their hysteretic behavior.Comment: 7 pages, 3 eps figures. Submitted to Phys. Rev. Lett, minor typos correcte

    Evidence for Skyrmion crystallization from NMR relaxation experiments

    Full text link
    A resistively detected NMR technique was used to probe the two-dimensional electron gas in a GaAs/AlGaAs quantum well. The spin-lattice relaxation rate (1/T1)(1/T_{1}) was extracted at near complete filling of the first Landau level by electrons. The nuclear spin of 75^{75}As is found to relax much more efficiently with T→0T\to 0 and when a well developed quantum Hall state with Rxx≃0R_{xx}\simeq 0 occurs. The data show a remarkable correlation between the nuclear spin relaxation and localization. This suggests that the magnetic ground state near complete filling of the first Landau level may contain a lattice of topological spin texture, i.e. a Skyrmion crystal

    Zener Tunneling Between Landau Orbits in a High-Mobility Two-Dimensional Electron Gas

    Full text link
    Magnetotransport in a laterally confined two-dimensional electron gas (2DEG) can exhibit modified scattering channels owing to a tilted Hall potential. Transitions of electrons between Landau levels with shifted guiding centers can be accomplished through a Zener tunneling mechanism, and make a significant contribution to the magnetoresistance. A remarkable oscillation effect in weak field magnetoresistance has been observed in high-mobility 2DEGs in GaAs-AlGa0.3_{0.3}As0.7_{0.7} heterostructures, and can be well explained by the Zener mechanism.Comment: 5 pages, 4 figures. Text slightly shortened, figures resize

    Composite Fermions in Modulated Structures: Transport and Surface Acoustic Waves

    Full text link
    Motivated by a recent experiment of Willett et al. [Phys. Rev. Lett. 78, 4478 (1997)], we employ semiclassical composite-fermion theory to study the effect of a periodic density modulation on a quantum Hall system near Landau level filling factor nu=1/2. We show that even a weak density modulation leads to dramatic changes in surface-acoustic-wave (SAW) propagation, and propose an explanation for several key features of the experimental observations. We predict that properly arranged dc transport measurements would show a structure similar to that seen in SAW measurements.Comment: Version published in Phys. Rev. Lett. Figures changed to show SAW velocity shift. LaTeX, 5 pages, two included postscript figure

    Evidence for an Anisotropic State of Two-Dimensional Electrons in High Landau Levels

    Get PDF
    Magneto-transport experiments on high mobility two-dimensional electron gases in GaAs/AlGaAs heterostructures have revealed striking anomalies near half-filling of several spin-resolved, yet highly excited, Landau levels. These anomalies include strong anisotropies and non-linearities of the longitudinal resistivity rho_xx which commence only below about 150mK. These phenomena are not seen in the ground or first excited Landau level but begin abruptly in the third level. Although their origin remains unclear, we speculate that they reflect the spontaneous development of a generic anisotropic many-electron state.Comment: 4 pages with 5 figures, to be published in Phys. Rev. Letters, new figure added (Fig. 4

    Reorientation of Anisotropy in a Square Well Quantum Hall Sample

    Full text link
    We have measured magnetotransport at half-filled high Landau levels in a quantum well with two occupied electric subbands. We find resistivities that are {\em isotropic} in perpendicular magnetic field but become strongly {\em anisotropic} at ν\nu = 9/2 and 11/2 on tilting the field. The anisotropy appears at an in-plane field, Bip∼B_{ip} \sim 2.5T, with the easy-current direction {\em parallel} to BipB_{ip} but rotates by 90∘^{\circ} at Bip∼B_{ip} \sim 10T and points now in the same direction as in single-subband samples. This complex behavior is in quantitative agreement with theoretical calculations based on a unidirectional charge density wave state model.Comment: 4 pages, 4 figure
    • …
    corecore