54 research outputs found
Cracks in Martensite Plates as Hydrogen Traps in a Bearing Steel
It is demonstrated that a macroscopically homogeneous distribution of
tiny cracks introduced into a martensitic bearing steel sample can provide
powerful hydrogen traps. The phenomenon has been investigated through
thermal desorption spectroscopy and hydrogen permeation measurements
using both cracked and integral samples. The e↵ective hydrogen di↵usion
coefficient through the cracked sample is found to be far less than in the uncracked
one. Similarly, when samples are charged with hydrogen, and then
subjected to thermal desorption analysis, the amount of hydrogen liberated
from the cracked sample is smaller due to the trapping by the cracks. Theoretical
analysis of the data shows that the traps due to cracks are so strong,
that any hydrogen within the cracks can never in practice de-trap and cause
harm by mechanisms that require the hydrogen to be mobile for the onset of
embrittlement.W. Solano-Alvarez is very
grateful for support from the Worshipful Company of Ironmongers, CONACyT,
the Cambridge Overseas Trust, and the Roberto Rocca Education Programme.This is the accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11661-014-2680-8
White-etching matter in bearing steel. Part II: Distinguishing cause and effect in bearing steel failure
The premature failure of large bearings of the type used in wind turbines, possibly through a mechanism called “white-structure flaking”, has triggered many studies of microstructural damage associated with “white-etching areas” created during rolling contact fatigue, although whether they are symptoms or causes of failure is less clear. Therefore, some special experiments have been conducted to prove that white-etching areas are the consequence, and not the cause, of damage. By artificially introducing a fine dispersion of microcracks in the steel through heat treatment and then subjecting the sample to rolling contact fatigue, manifestations of hard white-etching matter have been created to a much greater extent than samples similarly tested without initial cracks. A wide variety of characterization tools has been used to corroborate that the white areas thus created have the same properties as reported observations on real bearings. Evidence suggests that the formation mechanism of the white-etching regions involves the rubbing and beating of the free surfaces of cracks, debonded inclusions, and voids under repeated rolling contact. It follows that the focus in avoiding early failure should be in enhancing the toughness of the bearing steel in order to avoid the initial microscopic feature event.Funding by CONACyT, the
Cambridge Overseas Trust, and the Roberto Rocca Education Programme
is highly appreciated and acknowledged.This is the accepted manuscript version. The final published version is available from Springer at http://link.springer.com/article/10.1007%2Fs11661-014-2431-x
- …