183 research outputs found

    The influence of anesthetics, neurotransmitters and antibiotics on the relaxation processes in lipid membranes

    Get PDF
    In the proximity of melting transitions of artificial and biological membranes fluctuations in enthalpy, area, volume and concentration are enhanced. This results in domain formation, changes of the elastic constants, changes in permeability and slowing down of relaxation processes. In this study we used pressure perturbation calorimetry to investigate the relaxation time scale after a jump into the melting transition regime of artificial lipid membranes. This time corresponds to the characteristic rate of domain growth. The studies were performed on single-component large unilamellar and multilamellar vesicle systems with and without the addition of small molecules such as general anesthetics, neurotransmitters and antibiotics. These drugs interact with membranes and affect melting points and profiles. In all systems we found that heat capacity and relaxation times are related to each other in a simple manner. The maximum relaxation time depends on the cooperativity of the heat capacity profile and decreases with a broadening of the transition. For this reason the influence of a drug on the time scale of domain formation processes can be understood on the basis of their influence on the heat capacity profile. This allows estimations of the time scale of domain formation processes in biological membranes.Comment: 12 pages, 6 figure

    Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells

    Get PDF
    We report a method of fabricating a high work function, solution processable vanadium oxide (V2Ox(sol)) hole-extracting layer. The atmospheric processing conditions of film preparation have a critical influence on the electronic structure and stoichiometry of the V2Ox(sol), with a direct impact on organic photovoltaic (OPV) cell performance. Combined Kelvin probe (KP) and ultraviolet photoemission spectroscopy (UPS) measurements reveal a high work function, n-type character for the thin films, analogous to previously reported thermally evaporated transition metal oxides. Additional states within the band gap of V2Ox(sol) are observed in the UPS spectra and are demonstrated using X-ray photoelectron spectroscopy (XPS) to be due to the substoichiometric nature of V2Ox(sol). The optimized V2Ox(sol) layer performance is compared directly to bare indium–tin oxide (ITO), poly(ethyleneoxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and thermally evaporated molybdenum oxide (MoOx) interfaces in both small molecule/fullerene and polymer/fullerene structures. OPV cells incorporating V2Ox(sol) are reported to achieve favorable initial cell performance and cell stability attributes

    Metal oxide semiconducting interfacial layers for photovoltaic and photocatalytic applications

    Get PDF

    Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells

    Get PDF
    In organic solar cells (OSCs), cathode interfacial materials are generally designed with highly polar groups to increase the capability of lowering the work function of cathode. However, the strong polar group could result in a high surface energy and poor physical contact at the active layer surface, posing a challenge for interlayer engineering to address the trade-off between device stability and efficiency. Herein, we report a hydrogen-bonding interfacial material, aliphatic amine-functionalized perylene-diimide (PDINN), which simultaneously down-shifts the work function of the air stable cathodes (silver and copper), and maintains good interfacial contact with the active layer. The OSCs based on PDINN engineered silver-cathode demonstrate a high power conversion efficiency of 17.23% (certified value 16.77% by NREL) and high stability. Our results indicate that PDINN is an effective cathode interfacial material and interlayer engineering via suitable intermolecular interactions is a feasible approach to improve device performance of OSCs

    Understanding s-shaped current-voltage characteristics in organic solar cells containing a TiOx interlayer with impedance spectroscopy and equivalent circuit analysis

    No full text
    In this study we propose an equivalent circuit model to describe S-shaped current-voltage (I-V) characteristics in inverted solar cells with a TiOx interlayer between the cathode and the poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester active layer. Initially the solar cells demonstrate S-shaped I-V characteristics resulting in a low fill factor (FF). Upon light soaking with UV radiation, the resistance of the TiOx interlayer decreases, the S-shape disappears, and the FF increases. Impedance spectroscopy was used to investigate the influence of the resistance of the TiOx layer on the shape of the I-V characteristics. We show that the equivalent circuit model can describe the voltage dependence of the data before and after light soaking in a range from -1 to +1.5 V well, demonstrating the robustness of the model. The equivalent circuit elements can be attributed to the distinct layers in the solar cell, therefore giving insight into the origin of the S-shape behavior in this solar cell architecture

    Laminated fabric as top electrode for organic photovoltaics

    No full text
    A simple lamination technique for conductive and semitransparent fabrics on top of organic photovoltaic cells is presented. Conductive fabrics consisted of metal wires woven in a fabric with polymeric fibers. The lamination of this conductive fabric with help of a high conductive poly(3,4- ethylenedioxythiophene) polystyrene sulfonate formulation results in well aligned low resistive metal wires as top electrode. Semitransparent flexible organic photovoltaic cells were processed with laminated fabrics as top electrode and sputtered layers of aluminum doped zinc oxide and Ag as bottom electrode. The organic photovoltaic cells showed similar performance when illuminated through the bottom or top electrode. Optical simulations were performed to investigate light scattering effects of the fabric. Results are very promising for photovoltaic and lightning devices as well as for all kinds of devices where semitransparent, highly conductive, and non-vacuum processed electrode materials are needed
    • 

    corecore