4,885 research outputs found
Variations of the Selective Extinction Across the Galactic Bulge - Implications for the Galactic Bar
We propose a new method to investigate the coefficient of the selective
extinction, based on two band photometry. This method uses red clump stars as a
means to construct the reddening curve. We apply this method to the OGLE
color-magnitude diagrams to investigate the variations of the selective
extinction towards various parts of the Galactic bulge. We find that
coefficient is within the errors the same for
OGLE fields. Therefore, the difference of in the extinction
adjusted apparent magnitude of the red clump stars in these fields (Stanek et
al.~1994, 1995) cannot be assigned to a large-scale gradient of the selective
extinction coefficient. This strengthens the implication of this difference as
indicator of the presence of the bar in our Galaxy. However using present data
we cannot entirely exclude the possibility of variations of
the selective extinction coefficient on the large scales across the bulge.Comment: submitted to ApJ Letters, 10 pages, gziped PostScript with figures
included; also available through WWW at
http://www.astro.princeton.edu/~library/prep.htm
Can past gamma-ray bursts explain both INTEGRAL and ATIC/PAMELA/Fermi anomalies simultaneously?
Gamma-ray bursts (GRBs) have been invoked to explain both the 511 keV
emission from the galactic bulge and the high-energy positron excess inferred
from the ATIC, PAMELA, and Fermi data. While independent explanations can be
responsible for these phenomena, we explore the possibility of their common
GRB-related origin by modeling the GRB distribution and estimating the rates.
For an expected Milky Way long GRB rate, neither of the two signals is generic;
the local excess requires a 2% coincidence, while the signal from the galactic
center requires a 20% coincidence with respect to the timing of the latest GRB.
The simultaneous explanation requires a 0.4% coincidence. Considering the large
number of statistical "trials" created by multiple searches for new physics,
the coincidences of a few per cent cannot be dismissed as unlikely.
Alternatively, both phenomena can be explained by GRBs if the galactic rate is
higher than expected. We also show that a similar result is difficult to obtain
assuming a simplified short GRB distribution.Comment: 4 pages; version accepted for publicatio
First-principles study of the energetics of charge and cation mixing in U_{1-x} Ce_x O_2
The formalism of electronic density-functional-theory, with Hubbard-U
corrections (DFT+U), is employed in a computational study of the energetics of
U_{1-x} Ce_x O_2 mixtures. The computational approach makes use of a procedure
which facilitates convergence of the calculations to multiple self-consistent
DFT+U solutions for a given cation arrangement, corresponding to different
charge states for the U and Ce ions in several prototypical cation
arrangements. Results indicate a significant dependence of the structural and
energetic properties on the nature of both charge and cation ordering. With the
effective Hubbard-U parameters that reproduce well the measured
oxidation-reduction energies for urania and ceria, we find that charge transfer
between U(IV) and Ce(IV) ions, leading to the formation of U(V) and Ce(III),
gives rise to an increase in the mixing energy in the range of 4-14 kJ/mol of
formula unit, depending on the nature of the cation ordering. The results
suggest that although charge transfer between uranium and cerium ions is
disfavored energetically, it is likely to be entropically stabilized at the
high temperatures relevant to the processing and service of urania-based solid
solutions.Comment: 8 pages, 6 figure
RJK Observations of the Optical Afterglow of GRB 991216
We present near-infrared and optical observations of the afterglow to the
Gamma-Ray Burst (GRB) 991216 obtained with the F. L. Whipple Observatory 1.2-m
telescope and the University of Hawaii 2.2-m telescope. The observations range
from 15 hours to 3.8 days after the burst. The temporal behavior of the data is
well described by a single power-law decay with index -1.36 +/-0.04,
independent of wavelength. The optical spectral energy distribution, corrected
for significant Galactic reddening of E(B-V)=0.626, is well fitted by a single
power-law with index -0.58 +/- 0.08. Combining the IR/optical observations with
a Chandra X-ray measurement gives a spectral index of -0.8 +/- 0.1 in the
synchrotron cooling regime. A comparison between the spectral and temporal
power-law indices suggest that a jet is a better match to the observations than
a simple spherical shock.Comment: Accepted to the Astrophysical Journal, 12 pages, 4 postscript figure
- …
