8,558 research outputs found
Information-entropic analysis of Korteweg--de Vries solitons in the quark-gluon plasma
Solitary waves propagation of baryonic density perturbations, ruled by the
Korteweg--de Vries equation in a mean-field quark-gluon plasma model, are
investigated from the point of view of the theory of information. A recently
proposed continuous logarithmic measure of information, called configurational
entropy, is used to derive the soliton width, defining the pulse, for which the
informational content of the soliton spatial profile is more compressed, in the
Shannon's sense.Comment: 6 pages, 1 figur
Black string corrections in variable tension braneworld scenarios
Braneworld models with variable tension are investigated, and the corrections
on the black string horizon along the extra dimension are provided. Such
corrections are encrypted in additional terms involving the covariant
derivatives of the variable tension on the brane, providing profound
consequences concerning the black string horizon variation along the extra
dimension, near the brane. The black string horizon behavior is shown to be
drastically modified by the terms corrected by the brane variable tension. In
particular, a model motivated by the phenomenological interesting case
regarding Eotvos branes is investigated. It forthwith provides further physical
features regarding variable tension braneworld scenarios, heretofore concealed
in all previous analysis in the literature. All precedent analysis considered
uniquely the expansion of the metric up to the second order along the extra
dimension, what is able to evince solely the brane variable tension absolute
value. Notwithstanding, the expansion terms aftermath, further accomplished in
this paper from the third order on, elicits the successive covariant
derivatives of the brane variable tension, and their respective coupling with
the extrinsic curvature, the Weyl tensor, and the Riemann and Ricci tensors, as
well as the scalar curvature. Such additional terms are shown to provide sudden
modifications in the black string horizon in a variable tension braneworld
scenarioComment: 12 pages, 5 figures, accepted in PR
The extended minimal geometric deformation of SU() dark glueball condensates
The extended minimal geometric deformation (EMGD) procedure, in the
holographic membrane paradigm, is employed to model stellar distributions that
arise upon self-interacting scalar glueball dark matter condensation. Such
scalar glueballs are SU() Yang-Mills hidden sectors beyond the Standard
Model. Then, corrections to the gravitational wave radiation, emitted by
SU() EMGD dark glueball stars mergers, are derived, and their respective
spectra are studied in the EMGD framework, due to a phenomenological brane
tension with finite value. The bulk Weyl fluid that drives the EMGD is then
proposed to be experimentally detected by enhanced windows at the eLISA and
LIGO.Comment: 9 pages, 7 figure
Opening the Pandora's box of quantum spinor fields
Lounesto's classification of spinors is a comprehensive and exhaustive
algorithm that, based on the bilinears covariants, discloses the possibility of
a large variety of spinors, comprising regular and singular spinors and their
unexpected applications in physics and including the cases of Dirac, Weyl, and
Majorana as very particular spinor fields. In this paper we pose the problem of
an analogous classification in the framework of second quantization. We first
discuss in general the nature of the problem. Then we start the analysis of two
basic bilinear covariants, the scalar and pseudoscalar, in the second quantized
setup, with expressions applicable to the quantum field theory extended to all
types of spinors. One can see that an ampler set of possibilities opens up with
respect to the classical case. A quantum reconstruction algorithm is also
proposed. The Feynman propagator is extended for spinors in all classes.Comment: 18 page
Extended quantum portrait of MGD black holes and information entropy
The extended minimal geometric deformation (EMGD) is employed on the fluid
membrane paradigm, to describe compact stellar objects as Bose--Einstein
condensates (BEC) consisting of gravitons. The black hole quantum portrait,
besides deriving a preciser phenomenological bound for the fluid brane tension,
is then scrutinized from the point of view of the configurational entropy. It
yields a range for the critical density of the EMGD BEC, whose configurational
entropy has global minima suggesting the configurational stability of the EMGD
BEC.Comment: 9 pages, 7 figures, matches the published versio
Homogeneous abundance analysis of dwarf, subgiant and giant FGK stars with and without giant planets
We have analyzed high-resolution and high signal-to-noise ratio optical
spectra of nearby FGK stars with and without detected giant planets in order to
homogeneously measure their photospheric parameters, mass, age, and the
abundances of volatile (C, N, and O) and refractory (Na, Mg, Si, Ca, Ti, V, Mn,
Fe, Ni, Cu, and Ba) elements. Our sample contains 309 stars from the solar
neighborhood (up to the distance of 100 pc), out of which 140 are dwarfs, 29
are subgiants, and 140 are giants. The photospheric parameters are derived from
the equivalent widths of Fe I and Fe II lines. Masses and ages come from the
interpolation in evolutionary tracks and isochrones on the HR diagram. The
abundance determination is based on the equivalent widths of selected atomic
lines of the refractory elements and on the spectral synthesis of C_2, CN, C I,
O I, and Na I features. We apply a set of statistical methods to analyze the
abundances derived for the three subsamples. Our results show that: i) giant
stars systematically exhibit underabundance in [C/Fe] and overabundance in
[N/Fe] and [Na/Fe] in comparison with dwarfs, a result that is normally
attributed to evolution-induced mixing processes in the envelope of evolved
stars; ii) for solar analogs only, the abundance trends with the condensation
temperature of the elements are correlated with age and anticorrelated with the
surface gravity, which is in agreement with recent studies; iii) as in the case
of [Fe/H], dwarf stars with giant planets are systematically enriched in [X/H]
for all the analyzed elements, except for O and Ba (the former due to
limitations of statistics), confirming previous findings in the literature that
not only iron has an important relation with the planetary formation; and iv)
giant planet hosts are also significantly overabundant for the same metallicity
when the elements from Mg to Cu are combined together.Comment: 20 pages, 16 figures, 8 table
Mimicking Nanoribbon Behavior Using a Graphene Layer on SiC
We propose a natural way to create quantum-confined regions in graphene in a
system that allows large-scale device integration. We show, using
first-principles calculations, that a single graphene layer on a trenched
region of mimics i)the energy bands around the Fermi level
and ii) the magnetic properties of free-standing graphene nanoribbons.
Depending on the trench direction, either zigzag or armchair nanoribbons are
mimicked. This behavior occurs because a single graphene layer over a
surface loses the graphene-like properties, which are restored solely over the
trenches, providing in this way a confined strip region.Comment: 4 pages, 4 figure
- …