2,683 research outputs found

    Quantum Computers, Factoring, and Decoherence

    Get PDF
    In a quantum computer any superposition of inputs evolves unitarily into the corresponding superposition of outputs. It has been recently demonstrated that such computers can dramatically speed up the task of finding factors of large numbers -- a problem of great practical significance because of its cryptographic applications. Instead of the nearly exponential (expL1/3\sim \exp L^{1/3}, for a number with LL digits) time required by the fastest classical algorithm, the quantum algorithm gives factors in a time polynomial in LL (L2\sim L^2). This enormous speed-up is possible in principle because quantum computation can simultaneously follow all of the paths corresponding to the distinct classical inputs, obtaining the solution as a result of coherent quantum interference between the alternatives. Hence, a quantum computer is sophisticated interference device, and it is essential for its quantum state to remain coherent in the course of the operation. In this report we investigate the effect of decoherence on the quantum factorization algorithm and establish an upper bound on a ``quantum factorizable'' LL based on the decoherence suffered per operational step.Comment: 7 pages,LaTex + 2 postcript figures in a uuencoded fil

    Quantum Computing: Pro and Con

    Get PDF
    I assess the potential of quantum computation. Broad and important applications must be found to justify construction of a quantum computer; I review some of the known quantum algorithms and consider the prospects for finding new ones. Quantum computers are notoriously susceptible to making errors; I discuss recently developed fault-tolerant procedures that enable a quantum computer with noisy gates to perform reliably. Quantum computing hardware is still in its infancy; I comment on the specifications that should be met by future hardware. Over the past few years, work on quantum computation has erected a new classification of computational complexity, has generated profound insights into the nature of decoherence, and has stimulated the formulation of new techniques in high-precision experimental physics. A broad interdisciplinary effort will be needed if quantum computers are to fulfill their destiny as the world's fastest computing devices. (This paper is an expanded version of remarks that were prepared for a panel discussion at the ITP Conference on Quantum Coherence and Decoherence, 17 December 1996.)Comment: 17 pages, LaTeX, submitted to Proc. Roy. Soc. Lond. A, minor correction

    An Universal Quantum Network - Quantum CPU

    Get PDF
    An universal quantum network which can implement a general quantum computing is proposed. In this sense, it can be called the quantum central processing unit (QCPU). For a given quantum computing, its realization of QCPU is just its quantum network. QCPU is standard and easy-assemble because it only has two kinds of basic elements and two auxiliary elements. QCPU and its realizations are scalable, that is, they can be connected together, and so they can construct the whole quantum network to implement the general quantum algorithm and quantum simulating procedure.Comment: 8 pages, Revised versio

    Fault-Tolerant Error Correction with Efficient Quantum Codes

    Full text link
    We exhibit a simple, systematic procedure for detecting and correcting errors using any of the recently reported quantum error-correcting codes. The procedure is shown explicitly for a code in which one qubit is mapped into five. The quantum networks obtained are fault tolerant, that is, they can function successfully even if errors occur during the error correction. Our construction is derived using a recently introduced group-theoretic framework for unifying all known quantum codes.Comment: 12 pages REVTeX, 1 ps figure included. Minor additions and revision

    Restrictions on Transversal Encoded Quantum Gate Sets

    Full text link
    Transversal gates play an important role in the theory of fault-tolerant quantum computation due to their simplicity and robustness to noise. By definition, transversal operators do not couple physical subsystems within the same code block. Consequently, such operators do not spread errors within code blocks and are, therefore, fault tolerant. Nonetheless, other methods of ensuring fault tolerance are required, as it is invariably the case that some encoded gates cannot be implemented transversally. This observation has led to a long-standing conjecture that transversal encoded gate sets cannot be universal. Here we show that the ability of a quantum code to detect an arbitrary error on any single physical subsystem is incompatible with the existence of a universal, transversal encoded gate set for the code.Comment: 4 pages, v2: minor change

    A Theory of Fault-Tolerant Quantum Computation

    Full text link
    In order to use quantum error-correcting codes to actually improve the performance of a quantum computer, it is necessary to be able to perform operations fault-tolerantly on encoded states. I present a general theory of fault-tolerant operations based on symmetries of the code stabilizer. This allows a straightforward determination of which operations can be performed fault-tolerantly on a given code. I demonstrate that fault-tolerant universal computation is possible for any stabilizer code. I discuss a number of examples in more detail, including the five-qubit code.Comment: 30 pages, REVTeX, universal swapping operation added to allow universal computation on any stabilizer cod

    Quantum Error Correction and Orthogonal Geometry

    Get PDF
    A group theoretic framework is introduced that simplifies the description of known quantum error-correcting codes and greatly facilitates the construction of new examples. Codes are given which map 3 qubits to 8 qubits correcting 1 error, 4 to 10 qubits correcting 1 error, 1 to 13 qubits correcting 2 errors, and 1 to 29 qubits correcting 5 errors.Comment: RevTex, 4 pages, no figures, submitted to Phys. Rev. Letters. We have changed the statement of Theorem 2 to correct it -- we now get worse rates than we previously claimed for our quantum codes. Minor changes have been made to the rest of the pape
    corecore