26 research outputs found

    A new conventional criterion for the performance evaluation of gang saw machines

    Get PDF
    Available online 20 June 2019The process of cutting dimension stones by gang saw machines plays a vital role in the productivity and efficiency of quarries and stone cutting factories. The maximum electrical current (MEC) is a key variable for assessing this process. This paper proposes two new models based on multiple linear regression (MLP) and a robust non-linear algorithm of gene expression programming (GEP) to predict MEC. To do so, the parameters of Mohs hardness (Mh), uniaxial compressive strength (UCS), Schimazek’s F-abrasiveness factor (SF-a), Young’s modulus (YM) and production rate (Pr) were measured as input parameters using laboratory tests. A statistical comparison was made between the developed models and a previous study. The GEP-based model was found to be a reliable and robust modelling approach for predicting MEC. Finally, according to the conducted parametric analysis, Mh was identified as the most influential parameter on MEC prediction.Sina Shaffiee Haghshenas, Roohollah Shirani Faradonbeh, Reza Mikaeil, Sami Shaffiee Haghshenas, Abbas Taheri, Amir Saghatforoush, Alireza Dormish

    Long-term prediction of rockburst hazard in deep underground openings using three robust data mining techniques

    No full text
    Published online: 16 June 2018Rockburst phenomenon is the extreme release of strain energy stored in surrounding rock mass which could lead to casualties, damage to underground structures and equipment and finally endanger the economic viability of the project. Considering the complex mechanism of rockburst and a large number of factors affecting it, the conventional criteria cannot be used generally and with high reliability. Hence, there is a need to develop new models with high accuracy and ease to use in practice. This study focuses on the applicability of three novel data mining techniques including emotional neural network (ENN), gene expression programming (GEP), and decision tree-based C4.5 algorithm along with five conventional criteria to predict the occurrence of rockburst in a binary condition. To do so, a total of 134 rockburst events were compiled from various case studies and the models were established based on training datasets and input parameters of maximum tangential stress, uniaxial tensile strength, uniaxial compressive strength, and elastic energy index. The prediction strength of the constructed models was evaluated by feeding the testing datasets to the models and measuring the indices of root mean squared error (RMSE) and percentage of the successful prediction (PSP). The results showed the high accuracy and applicability of all three new models; however, the GA-ENN and the GEP methods outperformed the C4.5 method. Besides, it was found that the criterion of elastic energy index (EEI) is more accurate among other conventional criteria and with the results similar to the C4.5 model, can be used easily in practical applications. Finally, a sensitivity analysis was carried out and the maximum tangential stress was identified as the most influential parameter, which could be a guide for rockburst prediction.Roohollah Shirani Faradonbeh, Abbas Taher

    Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation

    No full text
    In addition to all benefits of blasting in mining and civil engineering applications, it has some undesirable environmental impacts. Backbreak is an unwanted phenomenon of blasting which can cause instability of mine walls, decreasing efficiency of drilling, falling down of machinery, etc. Recently, the use of new approaches such as artificial intelligence (AI) is greatly recommended by many researchers. In this paper, a new AI technique namely genetic programing (GP) was developed to predict BB. To prepare a sufficient database, 175 blasting works were investigated in Sungun copper mine, Iran. In these operations, the most influential parameters on BB including burden, spacing, stemming length, powder factor and stiffness ratio were measured and used to develop BB predictive models. To demonstrate capability of GP technique, a non-linear multiple regression (NLMR) model was also employed for prediction of BB. Value account for (VAF), root mean square error (RMSE) and coefficient of determination (R2) were used to control the capacity performance of the predictive models. The performance indices obtained by GP approach indicate the higher reliability of GP compared to NLMR model. RMSE and VAF values of 0.327 and 97.655, respectively, for testing datasets of GP approach reveal the superiority of this model in predicting BB, while these values were obtained as 0.865 and 81.816, respectively, for NLMR model

    Modification and prediction of blast-induced ground vibrations based on both empirical and computational techniques

    No full text
    Ground vibration (GV) is a blasting consequence and is an important parameter to control in mining and civil projects. Previous GV predictor models have mainly been developed considering two factors; charge per delay and distance from the blast-face. However, mostly the presence of the water as an influential factor has been neglected. In this paper, an attempt has been made to modify United State Bureau of Mines model (USBM) by incorporating the effect of water. For this purpose, 35 blasting operations were investigated in Chadormalu iron mine, Iran and required blasting parameters were recorded in each blasting operation. Eventually, a coefficient was calculated and added in USBM model for effect of water. To demonstrate the capability of the suggested equation, several empirical models were also used to predict measured values of PPV. Results showed that the modified USBM model can perform better compared to previous models. By establishing new parameter in the USBM model, a new predictive model based on gene expression programming (GEP) was utilized and developed to predict GV. To show capability of GEP model in estimating GV, linear multiple regression (LMR) and non-linear multiple regression (NLMR) techniques were also performed and developed using the same datasets. The results demonstrated that the newly proposed model is able to predict blast-induced GV more accurately than other developed techniques

    Prediction of ground vibration due to quarry blasting based on gene expression programming: a new model for peak particle velocity prediction

    No full text
    Blasting is a widely used technique for rock fragmentation in opencast mines and tunneling projects. Ground vibration is one of the most environmental effects produced by blasting operation. Therefore, the proper prediction of blast-induced ground vibrations is essential to identify safety area of blasting. This paper presents a predictive model based on gene expression programming (GEP) for estimating ground vibration produced by blasting operations conducted in a granite quarry, Malaysia. To achieve this aim, a total number of 102 blasting operations were investigated and relevant blasting parameters were measured. Furthermore, the most influential parameters on ground vibration, i.e., burden-to-spacing ratio, hole depth, stemming, powder factor, maximum charge per delay, and the distance from the blast face were considered and utilized to construct the GEP model. In order to show the capability of GEP model in estimating ground vibration, nonlinear multiple regression (NLMR) technique was also performed using the same datasets. The results demonstrated that the proposed model is able to predict blast-induced ground vibration more accurately than other developed technique. Coefficient of determination values of 0.914 and 0.874 for training and testing datasets of GEP model, respectively show superiority of this model in predicting ground vibration, while these values were obtained as 0.829 and 0.790 for NLMR model

    A new hybrid simulated annealing-based genetic programming technique to predict the ultimate bearing capacity of piles

    Get PDF
    The aim of this research is to develop three soft-computing techniques, including adaptive-neuro-fuzzy inference system (ANFIS), genetic-programming (GP) tree-based, and simulated annealing–GP or SA–GP for prediction of the ultimate-bearing capacity (Qult) of the pile. The collected database consists of 50 driven piles properties with pile length, pile cross-sectional area, hammer weight, pile set and drop height as model inputs and Qult as model output. Many GP and SA–GP models were constructed for estimating pile bearing capacity and the best models were selected using some performance indices. For comparison purposes, the ANFIS model was also applied to predict Qult of the pile. It was observed that the developed models are able to provide higher prediction performance in the design of Qult of the pile. Concerning the coefficient of correlation, and mean square error, the SA–GP model had the best values for both training and testing data sets, followed by the GP and ANFIS models, respectively. It implies that the neural-based predictive machine learning techniques like ANFIS are not as powerful as evolutionary predictive machine learning techniques like GP and SA–GP in estimating the ultimate-bearing capacity of the pile. Besides, GP and SA–GP can propose a formula for Qult prediction which is a privilege of these models over the ANFIS predictive model. The sensitivity analysis also showed that the Qult of pile looks to be more affected by pile cross-sectional area and pile set
    corecore