634 research outputs found
Spin Precession and Avalanches
In many magnetic materials, spin dynamics at short times are dominated by
precessional motion as damping is relatively small. In the limit of no damping
and no thermal noise, we show that for a large enough initial instability, an
avalanche can transition to an ergodic phase where the state is equivalent to
one at finite temperature, often above that for ferromagnetic ordering. This
dynamical nucleation phenomenon is analyzed theoretically. For small finite
damping the high temperature growth front becomes spread out over a large
region. The implications for real materials are discussed.Comment: 4 pages 2 figure
Internal dissipation of a polymer
The dynamics of flexible polymer molecules are often assumed to be governed
by hydrodynamics of the solvent. However there is considerable evidence that
internal dissipation of a polymer contributes as well. Here we investigate the
dynamics of a single chain in the absence of solvent to characterize the nature
of this internal friction. We model the chains as freely hinged but with
localized bond angles and 3-fold symmetric dihedral angles. We show that the
damping is close but not identical to Kelvin damping, which depends on the
first temporal and second spatial derivative of monomer position. With no
internal potential between monomers, the magnitude of the damping is small for
long wavelengths and weakly damped oscillatory time dependent behavior is seen
for a large range of spatial modes. When the size of the internal potential is
increased, such oscillations persist, but the damping becomes larger. However
underdamped motion is present even with quite strong dihedral barriers for long
enough wavelengths.Comment: 6 pages, 8 figure
Contesting the cruel treatment of abortion-seeking women
NOTICE: this is the author’s version of a work that was accepted for publication in Reproductive Health Matters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in REPRODUCTIVE HEALTH MATTERS, [VOL 22, ISSUE 44, (2014)] DOI: 10.1016/S0968-8080(14)44818-
Spectral responses in granular compaction
The slow compaction of a gently tapped granular packing is reminiscent of the
low-temperature dynamics of structural and spin glasses. Here, I probe the
dynamical spectrum of granular compaction by measuring a complex
(frequency-dependent) volumetric susceptibility . While the
packing density displays glass-like slow relaxations (aging) and
history-dependence (memory) at low tapping amplitudes, the susceptibility
displays very weak aging effects, and its spectrum shows no
sign of a rapidly growing timescale. These features place in
sharp contrast to its dielectric and magnetic counterparts in structural and
spin glasses; instead, bears close similarities to the complex
specific heat of spin glasses. This, I suggest, indicates the glass-like
dynamics in granular compaction are governed by statistically rare relaxation
processes that become increasingly separated in timescale from the typical
relaxations of the system. Finally, I examine the effect of finite system size
on the spectrum of compaction dynamics. Starting from the ansatz that low
frequency processes correspond to large scale particle rearrangements, I
suggest the observed finite size effects are consistent with the suppression of
large-scale collective rearrangements in small systems.Comment: 18 pages, 17 figures. Submitted to PR
Analysis of wasp-waisted hysteresis loops in magnetic rocks
The random-field Ising model of hysteresis is generalized to dilute magnets
and solved on a Bethe lattice. Exact expressions for the major and minor
hysteresis loops are obtained. In the strongly dilute limit the model provides
a simple and useful understanding of the shapes of hysteresis loops in magnetic
rock samples.Comment: 11 pages, 4 figure
Experimental observations of dynamic critical phenomena in a lipid membrane
Near a critical point, the time scale of thermally-induced fluctuations
diverges in a manner determined by the dynamic universality class. Experiments
have verified predicted 3D dynamic critical exponents in many systems, but
similar experiments in 2D have been lacking for the case of conserved order
parameter. Here we analyze time-dependent correlation functions of a quasi-2D
lipid bilayer in water to show that its critical dynamics agree with a recently
predicted universality class. In particular, the effective dynamic exponent
crosses over from to as the correlation
length of fluctuations exceeds a hydrodynamic length set by the membrane and
bulk viscosities.Comment: 5 pages, 3 figures and 2 additional pages of supplemen
Critical Hysteresis in Random Field XY and Heisenberg Models
We study zero-temperature hysteresis in random-field XY and Heisenberg models
in the zero-frequency limit of a cyclic driving field. We consider three
distributions of the random field and present exact solutions in the mean field
limit. The results show a strong effect of the form of disorder on critical
hysteresis as well as the shape of hysteresis loops. A discrepancy with an
earlier study based on the renormalization group is resolved.Comment: 10 pages, 6 figures; this is published version (added some text and
references
- …