634 research outputs found

    Spin Precession and Avalanches

    Full text link
    In many magnetic materials, spin dynamics at short times are dominated by precessional motion as damping is relatively small. In the limit of no damping and no thermal noise, we show that for a large enough initial instability, an avalanche can transition to an ergodic phase where the state is equivalent to one at finite temperature, often above that for ferromagnetic ordering. This dynamical nucleation phenomenon is analyzed theoretically. For small finite damping the high temperature growth front becomes spread out over a large region. The implications for real materials are discussed.Comment: 4 pages 2 figure

    Internal dissipation of a polymer

    Full text link
    The dynamics of flexible polymer molecules are often assumed to be governed by hydrodynamics of the solvent. However there is considerable evidence that internal dissipation of a polymer contributes as well. Here we investigate the dynamics of a single chain in the absence of solvent to characterize the nature of this internal friction. We model the chains as freely hinged but with localized bond angles and 3-fold symmetric dihedral angles. We show that the damping is close but not identical to Kelvin damping, which depends on the first temporal and second spatial derivative of monomer position. With no internal potential between monomers, the magnitude of the damping is small for long wavelengths and weakly damped oscillatory time dependent behavior is seen for a large range of spatial modes. When the size of the internal potential is increased, such oscillations persist, but the damping becomes larger. However underdamped motion is present even with quite strong dihedral barriers for long enough wavelengths.Comment: 6 pages, 8 figure

    Contesting the cruel treatment of abortion-seeking women

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Reproductive Health Matters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in REPRODUCTIVE HEALTH MATTERS, [VOL 22, ISSUE 44, (2014)] DOI: 10.1016/S0968-8080(14)44818-

    Spectral responses in granular compaction

    Full text link
    The slow compaction of a gently tapped granular packing is reminiscent of the low-temperature dynamics of structural and spin glasses. Here, I probe the dynamical spectrum of granular compaction by measuring a complex (frequency-dependent) volumetric susceptibility χ~v\tilde{\chi}_v. While the packing density ρ\rho displays glass-like slow relaxations (aging) and history-dependence (memory) at low tapping amplitudes, the susceptibility χ~v\tilde{\chi}_v displays very weak aging effects, and its spectrum shows no sign of a rapidly growing timescale. These features place χ~v\tilde{\chi}_v in sharp contrast to its dielectric and magnetic counterparts in structural and spin glasses; instead, χ~v\tilde\chi_v bears close similarities to the complex specific heat of spin glasses. This, I suggest, indicates the glass-like dynamics in granular compaction are governed by statistically rare relaxation processes that become increasingly separated in timescale from the typical relaxations of the system. Finally, I examine the effect of finite system size on the spectrum of compaction dynamics. Starting from the ansatz that low frequency processes correspond to large scale particle rearrangements, I suggest the observed finite size effects are consistent with the suppression of large-scale collective rearrangements in small systems.Comment: 18 pages, 17 figures. Submitted to PR

    Analysis of wasp-waisted hysteresis loops in magnetic rocks

    Full text link
    The random-field Ising model of hysteresis is generalized to dilute magnets and solved on a Bethe lattice. Exact expressions for the major and minor hysteresis loops are obtained. In the strongly dilute limit the model provides a simple and useful understanding of the shapes of hysteresis loops in magnetic rock samples.Comment: 11 pages, 4 figure

    Experimental observations of dynamic critical phenomena in a lipid membrane

    Full text link
    Near a critical point, the time scale of thermally-induced fluctuations diverges in a manner determined by the dynamic universality class. Experiments have verified predicted 3D dynamic critical exponents in many systems, but similar experiments in 2D have been lacking for the case of conserved order parameter. Here we analyze time-dependent correlation functions of a quasi-2D lipid bilayer in water to show that its critical dynamics agree with a recently predicted universality class. In particular, the effective dynamic exponent zeffz_{\text{eff}} crosses over from 2\sim 2 to 3\sim 3 as the correlation length of fluctuations exceeds a hydrodynamic length set by the membrane and bulk viscosities.Comment: 5 pages, 3 figures and 2 additional pages of supplemen

    Critical Hysteresis in Random Field XY and Heisenberg Models

    Full text link
    We study zero-temperature hysteresis in random-field XY and Heisenberg models in the zero-frequency limit of a cyclic driving field. We consider three distributions of the random field and present exact solutions in the mean field limit. The results show a strong effect of the form of disorder on critical hysteresis as well as the shape of hysteresis loops. A discrepancy with an earlier study based on the renormalization group is resolved.Comment: 10 pages, 6 figures; this is published version (added some text and references
    corecore