5 research outputs found

    Antisites and anisotropic diffusion in GaAs and GaSb

    Full text link
    The significant diffusion of Ga under Ga-rich conditions in GaAs and GaSb is counter intuitive as the concentration of Ga vacancies should be depressed although Ga vacancies are necessary to interpret the experimental evidence for Ga transport. To reconcile the existence of Ga vacancies under Ga-rich conditions, transformation reactions have been proposed. Here, density functional theory is employed to calculate the formation energies of vacancies on both sublattices and the migration energy barriers to overcome the formation of the vacancy-antisite defect. Transformation reactions enhance the vacancy concentration in both materials and migration energy barriers indicate that Ga vacancies will dominate. (C) 2013 AIP Publishing LLC

    The role of homophase and heterophase interfaces on transport properties in structured materials

    Full text link
    In structured or self-organized materials spatial confinement effects lead to structure- and interface-controlled modifications of the bulk transport properties. In part, such modifications can be accounted for by a classical master equation approach for the transport of the different charge carrier species. The rather large quantity of parameters, which enter such an approach, can more or less easily be adjusted to the dimensional characteristics, local potential changes at interfaces, and the electronic settings of the system as well as to temperature effects. On the other hand, a microscopically more detailed and mostly parameter-free picture is obtained from a quantum-mechanical treatment on the basis of the density-functional theory. An extension by a Green's function formalism allows the determination and analysis of electronic transport through contacted nanostructures. Examples will be given to demonstrate the applicability of the different approaches for dissipative and hopping transport through a regular array of nanostructures, for a mechanically triggered metal-insulator transition in nanowires, and for the enhanced conductivity at multiferroic domain walls

    The role of homophase and heterophase interfaces on transport properties in structured materials

    Full text link
    corecore