337 research outputs found
Escape from the vicinity of fractal basin boundaries of a star cluster
The dissolution process of star clusters is rather intricate for theory. We
investigate it in the context of chaotic dynamics. We use the simple Plummer
model for the gravitational field of a star cluster and treat the tidal field
of the Galaxy within the tidal approximation. That is, a linear approximation
of tidal forces from the Galaxy based on epicyclic theory in a rotating
reference frame. The Poincar\'e surfaces of section reveal the effect of a
Coriolis asymmetry. The system is non-hyperbolic which has important
consequences for the dynamics. We calculated the basins of escape with respect
to the Lagrangian points and . The longest escape times have been
measured for initial conditions in the vicinity of the fractal basin
boundaries. Furthermore, we computed the chaotic saddle for the system and its
stable and unstable manifolds. The chaotic saddle is a fractal structure in
phase space which has the form of a Cantor set and introduces chaos into the
system.Comment: Accepted by MNRAS, Figures have lower qualit
Testing the Asteroseismic Mass Scale Using Metal-Poor Stars Characterized with APOGEE and Kepler
Fundamental stellar properties, such as mass, radius, and age, can be
inferred using asteroseismology. Cool stars with convective envelopes have
turbulent motions that can stochastically drive and damp pulsations. The
properties of the oscillation frequency power spectrum can be tied to mass and
radius through solar-scaled asteroseismic relations. Stellar properties derived
using these scaling relations need verification over a range of metallicities.
Because the age and mass of halo stars are well-constrained by astrophysical
priors, they provide an independent, empirical check on asteroseismic mass
estimates in the low-metallicity regime. We identify nine metal-poor red giants
(including six stars that are kinematically associated with the halo) from a
sample observed by both the Kepler space telescope and the Sloan Digital Sky
Survey-III APOGEE spectroscopic survey. We compare masses inferred using
asteroseismology to those expected for halo and thick-disk stars. Although our
sample is small, standard scaling relations, combined with asteroseismic
parameters from the APOKASC Catalog, produce masses that are systematically
higher (=0.17+/-0.05 Msun) than astrophysical expectations. The
magnitude of the mass discrepancy is reduced by known theoretical corrections
to the measured large frequency separation scaling relationship. Using
alternative methods for measuring asteroseismic parameters induces systematic
shifts at the 0.04 Msun level. We also compare published asteroseismic analyses
with scaling relationship masses to examine the impact of using the frequency
of maximum power as a constraint. Upcoming APOKASC observations will provide a
larger sample of ~100 metal-poor stars, important for detailed asteroseismic
characterization of Galactic stellar populations.Comment: 4 figures; 1 table. Accepted to ApJ
The APOKASC Catalog: An Asteroseismic and Spectroscopic Joint Survey of Targets in the Kepler Fields
We present the first APOKASC catalog of spectroscopic and asteroseismic
properties of 1916 red giants observed in the Kepler fields. The spectroscopic
parameters provided from the Apache Point Observatory Galactic Evolution
Experiment project are complemented with asteroseismic surface gravities,
masses, radii, and mean densities determined by members of the Kepler
Asteroseismology Science Consortium. We assess both random and systematic
sources of error and include a discussion of sample selection for giants in the
Kepler fields. Total uncertainties in the main catalog properties are of order
80 K in Teff , 0.06 dex in [M/H], 0.014 dex in log g, and 12% and 5% in mass
and radius, respectively; these reflect a combination of systematic and random
errors. Asteroseismic surface gravities are substantially more precise and
accurate than spectroscopic ones, and we find good agreement between their mean
values and the calibrated spectroscopic surface gravities. There are, however,
systematic underlying trends with Teff and log g. Our effective temperature
scale is between 0-200 K cooler than that expected from the Infrared Flux
Method, depending on the adopted extinction map, which provides evidence for a
lower value on average than that inferred for the Kepler Input Catalog (KIC).
We find a reasonable correspondence between the photometric KIC and
spectroscopic APOKASC metallicity scales, with increased dispersion in KIC
metallicities as the absolute metal abundance decreases, and offsets in Teff
and log g consistent with those derived in the literature. We present mean
fitting relations between APOKASC and KIC observables and discuss future
prospects, strengths, and limitations of the catalog data.Comment: 49 pages. ApJSupp, in press. Full machine-readable ascii files
available under ancillary data. Categories: Kepler targets, asteroseismology,
large spectroscopic survey
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
Weighing stars from birth to death: mass determination methods across the HRD
The mass of a star is the most fundamental parameter for its structure,
evolution, and final fate. It is particularly important for any kind of stellar
archaeology and characterization of exoplanets. There exists a variety of
methods in astronomy to estimate or determine it. In this review we present a
significant number of such methods, beginning with the most direct and
model-independent approach using detached eclipsing binaries. We then move to
more indirect and model-dependent methods, such as the quite commonly used
isochrone or stellar track fitting. The arrival of quantitative
asteroseismology has opened a completely new approach to determine stellar
masses and to complement and improve the accuracy of other methods. We include
methods for different evolutionary stages, from the pre-main sequence to
evolved (super)giants and final remnants. For all methods uncertainties and
restrictions will be discussed. We provide lists of altogether more than 200
benchmark stars with relative mass accuracies between for the
covered mass range of M\in [0.1,16]\,\msun, of which are stars burning
hydrogen in their core and the other covering all other evolved stages.
We close with a recommendation how to combine various methods to arrive at a
"mass-ladder" for stars.Comment: Invited review article for The Astronomy and Astrophysics Review. 146
pages, 16 figures, 11 tables. Accepted version by the Journal. It includes
summary figure of accuracy/precision of methods for mass ranges and summary
table for individual method
Weighing stars from birth to death : mass determination methods across the HRD
Funding: C.A., J.S.G.M., and M.G.P. received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 670519: MAMSIE). N.B. gratefully acknowledge financial support from the Royal Society (University Research Fellowships) and from the European Research Council (ERC-CoG-646928, Multi-Pop).The mass of a star is the most fundamental parameter for its structure, evolution, and final fate. It is particularly important for any kind of stellar archaeology and characterization of exoplanets. There exist a variety of methods in astronomy to estimate or determine it. In this review we present a significant number of such methods, beginning with the most direct and model-independent approach using detached eclipsing binaries. We then move to more indirect and model-dependent methods, such as the quite commonly used isochrone or stellar track fitting. The arrival of quantitative asteroseismology has opened a completely new approach to determine stellar masses and to complement and improve the accuracy of other methods. We include methods for different evolutionary stages, from the pre-main sequence to evolved (super)giants and final remnants. For all methods uncertainties and restrictions will be discussed. We provide lists of altogether more than 200 benchmark stars with relative mass accuracies between [0.3 ,2 ]% for the covered mass range of M ∈[0.1 ,16 ] M⊙ , 75 % of which are stars burning hydrogen in their core and the other 25 % covering all other evolved stages. We close with a recommendation how to combine various methods to arrive at a "mass-ladder" for stars.PostprintPeer reviewe
Biomimetic, Mild Chemical Synthesis of CdTe-GSH Quantum Dots with Improved Biocompatibility
Multiple applications of nanotechnology, especially those involving highly fluorescent nanoparticles (NPs) or quantum dots (QDs) have stimulated the research to develop simple, rapid and environmentally friendly protocols for synthesizing NPs exhibiting novel properties and increased biocompatibility
- …