234 research outputs found

    Higher-Derivative Corrected Black Holes: Perturbative Stability and Absorption Cross-Section in Heterotic String Theory

    Get PDF
    This work addresses spherically symmetric, static black holes in higher-derivative stringy gravity. We focus on the curvature-squared correction to the Einstein-Hilbert action, present in both heterotic and bosonic string theory. The string theory low-energy effective action necessarily describes both a graviton and a dilaton, and we concentrate on the Callan-Myers-Perry solution in d-dimensions, describing stringy corrections to the Schwarzschild geometry. We develop the perturbation theory for the higher-derivative corrected action, along the guidelines of the Ishibashi-Kodama framework, focusing on tensor type gravitational perturbations. The potential obtained allows us to address the perturbative stability of the black hole solution, where we prove stability in any dimension. The equation describing gravitational perturbations to the Callan-Myers-Perry geometry also allows for a study of greybody factors and quasinormal frequencies. We address gravitational scattering at low frequencies, computing corrections arising from the curvature-squared term in the stringy action. We find that the absorption cross-section receives \alpha' corrections, even though it is still proportional to the area of the black hole event-horizon. We also suggest an expression for the absorption cross-section which could be valid to all orders in \alpha'.Comment: JHEP3.cls, 29 pages; v2: added refs, minor corrections and additions; v3: added more refs, more minor corrections and addition

    Some Consequences of Noncommutative Worldsheet of Superstring

    Full text link
    In this paper some properties of the superstring with noncommutative worldsheet are studied. We study the noncommutativity of the spacetime, generalization of the Poincar\'e symmetry of the superstring, the changes of the metric, antisymmetric tensor and dilaton.Comment: 11 pages, Latex, no figure, a new action and some references have been adde

    Eikonal Approximation in AdS/CFT: From Shock Waves to Four-Point Functions

    Get PDF
    We initiate a program to generalize the standard eikonal approximation to compute amplitudes in Anti-de Sitter spacetimes. Inspired by the shock wave derivation of the eikonal amplitude in flat space, we study the two-point function E ~ _{shock} in the presence of a shock wave in Anti-de Sitter, where O_1 is a scalar primary operator in the dual conformal field theory. At tree level in the gravitational coupling, we relate the shock two-point function E to the discontinuity across a kinematical branch cut of the conformal field theory four-point function A ~ , where O_2 creates the shock geometry in Anti-de Sitter. Finally, we extend the above results by computing E in the presence of shock waves along the horizon of Schwarzschild BTZ black holes. This work gives new tools for the study of Planckian physics in Anti-de Sitter spacetimes

    Non-Abelian Giant Gravitons

    Get PDF
    We argue that the giant graviton configurations known from the literature have a complementary, microscopical description in terms of multiple gravitational waves undergoing a dielectric (or magnetic moment) effect. We present a non-Abelian effective action for these gravitational waves with dielectric couplings and show that stable dielectric solutions exist. These solutions agree in the large NN limit with the giant graviton configurations in the literature.Comment: 8 pages. Contribution to the proceedings of the RTN workshop in Leuven, Belgium, September 200

    Two-Loop Beta Functions Without Feynman Diagrams

    Get PDF
    Starting from a consistency requirement between T-duality symmetry and renormalization group flows, the two-loop metric beta function is found for a d=2 bosonic sigma model on a generic, torsionless background. The result is obtained without Feynman diagram calculations, and represents further evidence that duality symmetry severely constrains renormalization flows.Comment: 4 pp., REVTeX. Added discussion on scheme (in)dependence; final version to appear in Phys. Rev. Let

    Quasinormal modes of a black hole surrounded by quintessence

    Full text link
    Using the third-order WKB approximation, we evaluate the quasinormal frequencies of massless scalar field perturbation around the black hole which is surrounded by the static and spherically symmetric quintessence. Our result shows that due to the presence of quintessence, the scalar field damps more rapidly. Moreover, we also note that the quintessential state parameter ϵ\epsilon (the ratio of pressure pqp_q to the energy density ρq\rho_q) play an important role for the quasinormal frequencies. As the state parameter ϵ\epsilon increases the real part increases and the absolute value of the imaginary part decreases. This means that the scalar field decays more slowly in the larger ϵ\epsilon quintessence case.Comment: 7 pages, 3 figure

    Clinical and molecular practice of European thoracic pathology laboratories during the COVID-19 pandemic. The past and the near future

    Get PDF
    COVID-19; Bioseguretat; PatologiaCOVID-19; Bioseguridad; PatologíaCOVID-19; Biosafety; PathologyBackground: This study evaluated the consequences in Europe of the COVID-19 outbreak on pathology laboratories orientated toward the diagnosis of thoracic diseases. Materials and methods: A survey was sent to 71 pathology laboratories from 21 European countries. The questionnaire requested information concerning the organization of biosafety, the clinical and molecular pathology, the biobanking, the workload, the associated research into COVID-19, and the organization of education and training during the COVID-19 crisis, from 15 March to 31 May 2020, compared with the same period in 2019. Results: Questionnaires were returned from 53/71 (75%) laboratories from 18 European countries. The biosafety procedures were heterogeneous. The workload in clinical and molecular pathology decreased dramatically by 31% (range, 3%-55%) and 26% (range, 7%-62%), respectively. According to the professional category, between 28% and 41% of the staff members were not present in the laboratories but did teleworking. A total of 70% of the laboratories developed virtual meetings for the training of residents and junior pathologists. During the period of study, none of the staff members with confirmed COVID-19 became infected as a result of handling samples. Conclusions: The COVID-19 pandemic has had a strong impact on most of the European pathology laboratories included in this study. Urgent implementation of several changes to the organization of most of these laboratories, notably to better harmonize biosafety procedures, was noted at the onset of the pandemic and maintained in the event of a new wave of infection occurring in Europe

    Supertubes in reduced holonomy manifolds

    Full text link
    We show that the supertube configurations exist in all supersymmetric type IIA backgrounds which are purely geometrical and which have, at least, one flat direction. In other words, they exist in any spacetime of the form R^{1,1} x M_8, with M_8 any of the usual reduced holonomy manifolds. These generalised supertubes preserve 1/4 of the supersymmetries preserved by the choice of the manifold M_8. We also support this picture with the construction of their corresponding family of IIA supergravity backgrounds preserving from 1/4 to 1/32 of the total supercharges.Comment: 20 page

    Conformal Symmetry and the Three Point Function for the Gravitational Axial Anomaly

    Get PDF
    This work presents a first study of a radiative calculation for the gravitational axial anomaly in the massless Abelian Higgs model. The two loop contribution to the anomalous correlation function of one axial current and two energy-momentum tensors, , is computed at an order that involves only internal matter fields. Conformal properties of massless field theories are used in order to perform the Feynman diagram calculations in the coordinate space representation. The two loop contribution is found not to vanish, due to the presence of two independent tensor structures in the anomalous correlator.Comment: 34 pages, 5 figures, RevTex, Minor changes, Final version for Phys. Rev.
    corecore