3,294 research outputs found
Lambda hyperonic effect on the normal driplines
A generalized mass formula is used to calculate the neutron and proton drip
lines of normal and lambda hypernuclei treating non-strange and strange nuclei
on the same footing. Calculations suggest existence of several bound
hypernuclei whose normal cores are unbound. Addition of Lambda or,
Lambda-Lambda hyperon(s) to a normal nucleus is found to cause shifts of the
neutron and proton driplines from their conventional limits.Comment: 6 pages, 4 tables, 0 figur
An Analysis of the Search Spaces for Generate and Validate Patch Generation Systems
We present the first systematic analysis of the characteristics of patch
search spaces for automatic patch generation systems. We analyze the search
spaces of two current state-of-the-art systems, SPR and Prophet, with 16
different search space configurations. Our results are derived from an analysis
of 1104 different search spaces and 768 patch generation executions. Together
these experiments consumed over 9000 hours of CPU time on Amazon EC2.
The analysis shows that 1) correct patches are sparse in the search spaces
(typically at most one correct patch per search space per defect), 2) incorrect
patches that nevertheless pass all of the test cases in the validation test
suite are typically orders of magnitude more abundant, and 3) leveraging
information other than the test suite is therefore critical for enabling the
system to successfully isolate correct patches.
We also characterize a key tradeoff in the structure of the search spaces.
Larger and richer search spaces that contain correct patches for more defects
can actually cause systems to find fewer, not more, correct patches. We
identify two reasons for this phenomenon: 1) increased validation times because
of the presence of more candidate patches and 2) more incorrect patches that
pass the test suite and block the discovery of correct patches. These
fundamental properties, which are all characterized for the first time in this
paper, help explain why past systems often fail to generate correct patches and
help identify challenges, opportunities, and productive future directions for
the field
Folding model analysis of proton radioactivity of spherical proton emitters
Half lives of the decays of spherical nuclei away from proton drip line by
proton emissions are estimated theoretically. The quantum mechanical tunneling
probability is calculated within the WKB approximation. Microscopic
proton-nucleus interaction potentials are obtained by single folding the
densities of the daughter nuclei with M3Y effective interaction supplemented by
a zero-range pseudo-potential for exchange along with the density dependence.
Strengths of the M3Y interaction are extracted by fitting its matrix elements
in an oscillator basis to those elements of the G-matrix obtained with the
Reid-Elliott soft-core nucleon-nucleon interaction. Parameters of the density
dependence are obtained from the nuclear matter calculations. Spherical charge
distributions are used for calculating the Coulomb interaction potentials.
These calculations provide reasonable estimates for the observed proton
radioactivity lifetimes of proton rich nuclei for proton emissions from 26
ground and isomeric states of spherical proton emitters.Comment: 6 page
Study on Noncommutative Representations of Galilean Generators
The representations of Galilean generators are constructed on a space where
both position and momentum coordinates are noncommutating operators. A
dynamical model invariant under noncommutative phase space transformations is
constructed. The Dirac brackets of this model reproduce the original
noncommutative algebra. Also, the generators in terms of noncommutative phase
space variables are abstracted from this model in a consistent manner. Finally,
the role of Jacobi identities is emphasised to produce the noncommuting
structure that occurs when an electron is subjected to a constant magnetic
field and Berry curvature.Comment: Title changed, new references added, published in Int. J. Mod. Phys.
Non equilibrium statistical physics with fictitious time
Problems in non equilibrium statistical physics are characterized by the
absence of a fluctuation dissipation theorem. The usual analytic route for
treating these vast class of problems is to use response fields in addition to
the real fields that are pertinent to a given problem. This line of argument
was introduced by Martin, Siggia and Rose. We show that instead of using the
response field, one can, following the stochastic quantization of Parisi and
Wu, introduce a fictitious time. In this extra dimension a fluctuation
dissipation theorem is built in and provides a different outlook to problems in
non equilibrium statistical physics.Comment: 4 page
- …