100 research outputs found

    Fabrication of FeSi and Fe3Si compounds by electron beam induced mixing of [Fe/Si]2 and [Fe3/Si]2 multilayers grown by focused electron beam induced deposition

    Full text link
    Fe-Si binary compounds have been fabricated by focused electron beam induced deposition by the alternating use of iron pentacarbonyl, Fe(CO)5, and neopentasilane, Si5H12 as precursor gases. The fabrication procedure consisted in preparing multilayer structures which were treated by low-energy electron irradiation and annealing to induce atomic species intermixing. In this way we are able to fabricate FeSi and Fe3Si binary compounds from [Fe=Si]2 and [Fe3=Si]2 multilayers, as shown by transmission electron microscopy investigations. This fabrication procedure is useful to obtain nanostructured binary alloys from precursors which compete for adsorption sites during growth and, therefore, cannot be used simultaneously

    Influence of the substrate-induced strain and irradiation disorder on the Peierls transition in TTF-TCNQ microdomains

    Full text link
    The influence of the combined effects of substrate-induced strain, finite size and electron irradiation-induced defects have been studied on individual micron-sized domains of the organic charge transfer compound tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) by temperature-dependent conductivity and current-voltage measurements. The individual domains have been isolated by focused ion beam etching and electrically contacted by focused ion and electron beam induced deposition of metallic contacts. The temperature-dependent conductivity follows a variable range hopping behavior which shows a crossover of the exponent as the Peierls transition is approached. The low temperature behavior is analyzed within the segmented rod model of Fogler, Teber and Shklowskii, as originally developed for a charge-ordered quasi one-dimensional electron crystal. The results are compared with data obtained on as-grown and electron irradiated epitaxial TTF-TCNQ thin films of the two-domain type

    Ultra-fast vortex motion in dirty Nb-C superconductor with a close-to-perfect edge barrier

    Full text link
    The ultra-fast dynamics of superconducting vortices harbors rich physics generic to nonequilibrium collective systems. The phenomenon of flux-flow instability (FFI), however, prevents its exploration and sets practical limits for the use of vortices in various applications. To suppress the FFI, a superconductor should exhibit a rarely achieved combination of properties: weak volume pinning, close-to-depairing critical current, and fast heat removal from heated electrons. Here, we demonstrate experimentally ultra-fast vortex motion at velocities of 10-15 km/s in a directly written Nb-C superconductor in which a close-to-perfect edge barrier orders the vortex motion at large current values. The spatial evolution of the FFI is described using the edge-controlled FFI model, implying a chain of FFI nucleation points along the sample edge and their development into self-organized Josephson-like junctions (vortex rivers). In addition, our results offer insights into the applicability of widely used FFI models and suggest Nb-C to be a good candidate material for fast single-photon detectors.Comment: 12 pages, 7 page

    Cherenkov radiation of spin waves by ultra-fast moving magnetic flux quanta

    Full text link
    Despite theoretical predictions for a Cherenkov-type radiation of spin waves (magnons) by various propagating magnetic perturbations, fast-enough moving magnetic field stimuli have not been available so far. Here, we experimentally realize the Cherenkov radiation of spin waves in a Co-Fe magnonic conduit by fast-moving (>1 km/s) magnetic flux quanta (Abrikosov vortices) in an adjacent Nb-C superconducting strip. The radiation is evidenced by the microwave detection of spin waves propagating a distance of 2 micrometers from the superconductor and it is accompanied by a magnon Shapiro step in its current-voltage curve. The spin-wave excitation is unidirectional and monochromatic, with sub-40 nm wavelengths determined by the period of the vortex lattice. The phase-locking of the vortex lattice with the excited spin wave limits the vortex velocity and reduces the dissipation in the superconductor.Comment: 11 pages, 5 page

    Magnetotransport properties of iron microwires fabricated by focused electron beam induced autocatalytic growth

    Full text link
    We have prepared iron microwires in a combination of focused electron beam induced deposition (FEBID) and autocatalytic growth from the iron pentacarbonyl, Fe(CO)5, precursor gas under UHV conditions. The electrical transport properties of the microwires were investigated and it was found that the temperature dependence of the longitudinal resistivity (rhoxx) shows a typical metallic behaviour with a room temperature value of about 88 micro{\Omega} cm. In order to investigate the magnetotransport properties we have measured the isothermal Hall-resistivities in the range between 4.2 K and 260 K. From these measurements positive values for the ordinary and the anomalous Hall coefficients were derived. The relation between anomalous Hall resistivity (rhoAN) and longitudinal resistivity is quadratic, rhoAN rho^2 xx, revealing an intrinsic origin of the anomalous Hall effect. Finally, at low temperature in the transversal geometry a negative magnetoresistance of about 0.2 % was measured
    • …
    corecore