15,956 research outputs found

    Activity In Vitro of Clotrimazole against Canine Methicillin-Resistant and Susceptible Staphylococcus pseudintermedius

    Get PDF
    Emergence of multidrug-resistance in Staphylococcus pseudintermedius (SP) has increased interest in topical therapy as an alternative to systemic antibiotics in canine pyoderma. The antifungal imidazole, clotrimazole, is contained in numerous licensed canine ear preparations. Its in vitro activity against SP has not been evaluated, although previous studies have shown that the related imidazole, miconazole, has significant anti-staphylococcal efficacy. We therefore determined minimum inhibitory concentrations (MICs) of clotrimazole amongst 50 SP isolates (25 methicillin-resistant [MR]SP and susceptible [MS]SP) collected from dogs in Germany during 2010–2011 using an agar dilution method (CLSI VET01-A4). MICs amongst MRSP and MSSP were comparable (MIC50 and MIC90 = 1mg/L for both groups, p = 0.317); overall, 49 isolates had MIC = 1 mg/L and one had MIC = 0.5 mg/L. The relatively low MICs obtained in this study are likely to be exceeded by topical therapy and thus further clinical evaluation of clotrimazole use in canine superficial pyoderma and otitis externa caused by MRSP and MSSP is now warranted

    Productivity policy

    Get PDF
    In this Briefing Note, we first present internationally comparative evidence on the UK's productivity performance (Section 2) and some of the underlying "drivers" of productivity identified by the government (Section 3). We then provide an overview of productivity policy under both Labour governments since 1997, and discuss the recent direction of policy in this 2005 Election Briefing area (Section 4). Finally, we discuss the proposals of the three main parties in the area of productivity policy (Section 5)

    Window Function for Non-Circular Beam CMB Anisotropy Experiment

    Get PDF
    We develop computationally rapid methods to compute the window function for a cosmic microwave background anisotropy experiment with a non-circular beam which scans over large angles on the sky. To concretely illustrate these methods we compute the window function for the Python V experiment which scans over large angles on the sky with an elliptical Gaussian beam.Comment: 27 pages, 5 figure

    Constraining Large Scale Structure Theories with the Cosmic Background Radiation

    Full text link
    We review the relevant 10+ parameters associated with inflation and matter content; the relation between LSS and primary and secondary CMB anisotropy probes; COBE constraints on energy injection; current anisotropy band-powers which strongly support the gravitational instability theory and suggest the universe could not have reionized too early. We use Bayesian analysis methods to determine what current CMB and CMB+LSS data imply for inflation-based Gaussian fluctuations in tilted Λ\LambdaCDM, Λ\LambdahCDM and oCDM model sequences with age 11-15 Gyr, consisting of mixtures of baryons, cold (and possibly hot) dark matter, vacuum energy, and curvature energy in open cosmologies. For example, we find the slope of the initial spectrum is within about 5% of the (preferred) scale invariant form when just the CMB data is used, and for Λ\LambdaCDM when LSS data is combined with CMB; with both, a nonzero value of ΩΛ\Omega_\Lambda is strongly preferred (≈2/3\approx 2/3 for a 13 Gyr sequence, similar to the value from SNIa). The ooCDM sequence prefers Ωtot<1\Omega_{tot}<1 , but is overall much less likely than the flat ΩΛ≠0\Omega_\Lambda \ne 0 sequence with CMB+LSS. We also review the rosy forecasts of angular power spectra and parameter estimates from future balloon and satellite experiments when foreground and systematic effects are ignored.Comment: 20 pages, LaTeX, 5 figures, 2 tables, uses rspublic.sty To appear in Philosophical Transactions of the Royal Society of London A, 1998. "Discussion Meeting on Large Scale Structure in the Universe," Royal Society, London, March 1998. Text and colour figures also available at ftp://ftp.cita.utoronto.ca/bond/roysoc9

    Studying and Modeling the Connection between People's Preferences and Content Sharing

    Full text link
    People regularly share items using online social media. However, people's decisions around sharing---who shares what to whom and why---are not well understood. We present a user study involving 87 pairs of Facebook users to understand how people make their sharing decisions. We find that even when sharing to a specific individual, people's own preference for an item (individuation) dominates over the recipient's preferences (altruism). People's open-ended responses about how they share, however, indicate that they do try to personalize shares based on the recipient. To explain these contrasting results, we propose a novel process model of sharing that takes into account people's preferences and the salience of an item. We also present encouraging results for a sharing prediction model that incorporates both the senders' and the recipients' preferences. These results suggest improvements to both algorithms that support sharing in social media and to information diffusion models.Comment: CSCW 201

    Constraints on scalar-tensor theories from observations

    Full text link
    We study the dynamical description of scalar-tensor gravity by performing the best-fit analysis for two cases of exponential and power-law form of the potential and scalar field function coupled to the curvature. The models are then tested against observational data. The results show that in both scenarios the Universe undergoes an acceleration expansion period and the geometrical equivalent of dark energy is associated with a time-dependent equation of state.Comment: 16 pages, 32 figure

    The Evolution of the Cosmic Microwave Background

    Full text link
    We discuss the time dependence and future of the Cosmic Microwave Background (CMB) in the context of the standard cosmological model, in which we are now entering a state of endless accelerated expansion. The mean temperature will simply decrease until it reaches the effective temperature of the de Sitter vacuum, while the dipole will oscillate as the Sun orbits the Galaxy. However, the higher CMB multipoles have a richer phenomenology. The CMB anisotropy power spectrum will for the most part simply project to smaller scales, as the comoving distance to last scattering increases, and we derive a scaling relation that describes this behaviour. However, there will also be a dramatic increase in the integrated Sachs-Wolfe contribution at low multipoles. We also discuss the effects of tensor modes and optical depth due to Thomson scattering. We introduce a correlation function relating the sky maps at two times and the closely related power spectrum of the difference map. We compute the evolution both analytically and numerically, and present simulated future sky maps.Comment: 23 pages, 11 figures; references added; one figure dropped and minor changes to match published version. For high-resolution versions of figures and animations, see http://www.astro.ubc.ca/people/scott/future.htm

    Revisit of cosmic age problem

    Full text link
    We investigate the cosmic age problem associated with 9 extremely old globular clusters in M31 galaxy and 1 very old high-zz quasar APM 08279 + 5255 at z=3.91z=3.91. These 9 globular clusters have not been used to study the cosmic age problem in the previous literature. By evaluating the age of the universe in the Λ\LambdaCDM model with the observational constraints from the SNIa, the BAO, the CMB, and the independent H0H_0 measurements, we find that the existence of 5 globular clusters and 1 high-zz quasar are in tension (over 2σ\sigma confidence level) with the current cosmological observations. So if the age estimates of these objects are correct, the cosmic age puzzle still remains in the standard cosmology. Moreover, we extend our investigations to the cases of the interacting dark energy models. It is found that although the introduction of the interaction between dark sectors can give a larger cosmic age, the interacting dark energy models still have difficulty to pass the cosmic age test.Comment: 11 pages, 5 figures, 1 table, accepted for publication in PR

    A Way to Dynamically Overcome the Cosmological Constant Problem

    Full text link
    The Cosmological Constant problem can be solved once we require that the full standard Einstein Hilbert lagrangian, gravity plus matter, is multiplied by a total derivative. We analyze such a picture writing the total derivative as the covariant gradient of a new vector field (b_mu). The dynamics of this b_mu field can play a key role in the explanation of the present cosmological acceleration of the Universe.Comment: 5 page
    • …
    corecore