6 research outputs found
Not Available
Not AvailableStar Anise (Illicium griffithii Hook. F. and Thoms.): A Socially Important Tree Species from High Altitude Region of Arunachal PradeshNot Availabl
Utility of physiologically based pharmacokinetic modeling to predict inter-antibody variability in monoclonal antibody pharmacokinetics in mice
ABSTRACTIn this investigation, we tested the hypothesis that a physiologically based pharmacokinetic (PBPK) model incorporating measured in vitro metrics of off-target binding can largely explain the inter-antibody variability in monoclonal antibody (mAb) pharmacokinetics (PK). A diverse panel of 83 mAbs was evaluated for PK in wild-type mice and subjected to 10 in vitro assays to measure major physiochemical attributes. After excluding for target-mediated elimination and immunogenicity, 56 of the remaining mAbs with an eight-fold variability in the area under the curve ([Formula: see text]: 1.74 × 106 −1.38 × 107 ng∙h/mL) and 10-fold difference in clearance (2.55–26.4 mL/day/kg) formed the training set for this investigation. Using a PBPK framework, mAb-dependent coefficients F1 and F2 modulating pinocytosis rate and convective transport, respectively, were estimated for each mAb with mostly good precision (coefficient of variation (CV%)  1. The predictive utility of the developed PBPK model was evaluated against a separate panel of 14 mAbs biased toward high clearance, among which area under the curve of PK data of 12 mAbs was predicted within 2.5-fold error, and the positive and negative predictive values for clearance prediction were 85% and 100%, respectively. MAb heparin chromatography assay output allowed a priori identification of mAb candidates with unfavorable PK