224 research outputs found
Chemical identification of microfossils from Gunflint chert (1.88 Ga) with spaceborne Mass Spectrometer
Stars and planetary system
Thermochemical scanning probe lithography of protein gradients at the nanoscale
Patterning nanoscale protein gradients is crucial for studying a variety of cellular processes in vitro. Despite the recent development in nano-fabrication technology, combining nanometric resolution and fine control of protein concentrations is still an open challenge. Here, we demonstrate the use of thermochemical scanning probe lithography (tc-SPL) for defining micro- and nano-sized patterns with precisely controlled protein concentration. First, tc-SPL is performed by scanning a heatable atomic force microscopy tip on a polymeric substrate, for locally exposing reactive amino groups on the surface, then the substrate is functionalized with streptavidin and laminin proteins. We show, by fluorescence microscopy on the patterned gradients, that it is possible to precisely tune the concentration of the immobilized proteins by varying the patterning parameters during tc-SPL. This paves the way to the use of tc-SPL for defining protein gradients at the nanoscale, to be used as chemical cues e.g. for studying and regulating cellular processes in vitro
In-situ analysis of 1.9 Ga chert with a miniature mass spectrometer for space: Chemical profiling of microfossils preserved in the host mineral
Stars and planetary system
Nanofriction mechanisms derived from the dependence of friction on load and sliding velocity from air to UHV on hydrophilic silicon
This paper examines friction as a function of the sliding velocity and
applied normal load from air to UHV in a scanning force microscope (SFM)
experiment in which a sharp silicon tip slides against a flat Si(100) sample.
Under ambient conditions, both surfaces are covered by a native oxide, which is
hydrophilic. During pump-down in the vacuum chamber housing the SFM, the
behavior of friction as a function of the applied normal load and the sliding
velocity undergoes a change. By analyzing these changes it is possible to
identify three distinct friction regimes with corresponding contact properties:
(a) friction dominated by the additional normal forces induced by capillarity
due to the presence of thick water films, (b) higher drag force from ordering
effects present in thin water layers and (c) low friction due to direct
solid-solid contact for the sample with the counterbody. Depending on
environmental conditions and the applied normal load, all three mechanisms may
be present at one time. Their individual contributions can be identified by
investigating the dependence of friction on the applied normal load as well as
on the sliding velocity in different pressure regimes, thus providing
information about nanoscale friction mechanisms
Temporal variability in bioassays of the stomatal ammonia compensation point in relation to plant and soil nitrogen parameters in intensively managed grassland
The exchange of ammonia between crop canopies and the atmosphere depends on a range of plant parameters and climatic conditions. However, little is known about effects of management factors. We have here investigated the stomatal ammonia compensation point in response to cutting and fertilization of a grass sward dominated by Lolium perenne. Tall grass had a very low NH3 compensation point (around 1 nmol mol−1), reflecting the fact that leaf nitrogen (N) concentration was very low. During re-growth after cutting, leaf tissue concentrations of NO3-, NH4+, soluble N and total N increased along with apoplastic NH4+ concentrations. In contrast, apoplastic pH decreased resulting in largely unaltered NH3 compensation points. Nitrogen fertilization one week after cutting caused the apoplastic NH4+ concentration of the newly emerging leaves to increase dramatically. The NH3 compensation point peaked between 15 and 25 nmol mol−1 the day after the fertiliser was applied and thereafter decreased over the following 10 days until reaching the same level as before fertilisation. Ammonium concentrations in leaf apoplast, bulk tissue and litter were positively correlated (P=0.001) throughout the experimental period. Bulk tissue NH4+ concentrations, total plant N and soil NH4+ concentrations also showed a positive correlation. A very high potential for NH3 emission was shown by the plant litter
Capabilities of a space-born laser mass spectrometer for detection of planetary microsized-fossils
Instrumentatio
Slow dynamics and aging of a confined granular flow
We present experimental results on slow flow properties of a granular
assembly confined in a vertical column and driven upwards at a constant
velocity V. For monodisperse assemblies this study evidences at low velocities
() a stiffening behaviour i.e. the stress necessary to obtain
a steady sate velocity increases roughly logarithmically with velocity. On the
other hand, at very low driving velocity (), we evidence a
discontinuous and hysteretic transition to a stick-slip regime characterized by
a strong divergence of the maximal blockage force when the velocity goes to
zero. We show that all this phenomenology is strongly influenced by surrounding
humidity. We also present a tentative to establish a link between the granular
rheology and the solid friction forces between the wall and the grains. We base
our discussions on a simple theoretical model and independent grain/wall
tribology measurements. We also use finite elements numerical simulations to
confront experimental results to isotropic elasticity. A second system made of
polydisperse assemblies of glass beads is investigated. We emphasize the onset
of a new dynamical behavior, i.e. the large distribution of blockage forces
evidenced in the stick-slip regime
Radial elasticity of multi-walled carbon nanotubes
We report an experimental and a theoretical study of the radial elasticity of
multi-walled carbon nanotubes as a function of external radius. We use atomic
force microscopy and apply small indentation amplitudes in order to stay in the
linear elasticity regime. The number of layers for a given tube radius is
inferred from transmission electron microscopy, revealing constant ratios of
external to internal radii. This enables a comparison with molecular dynamics
results, which also shed some light onto the applicability of Hertz theory in
this context. Using this theory, we find a radial Young modulus strongly
decreasing with increasing radius and reaching an asymptotic value of 30 +/- 10
GPa.Comment: 5 pages, 3 figure
- …