2,204 research outputs found
Instability of spatial patterns and its ambiguous impact on species diversity
Self-arrangement of individuals into spatial patterns often accompanies and
promotes species diversity in ecological systems. Here, we investigate pattern
formation arising from cyclic dominance of three species, operating near a
bifurcation point. In its vicinity, an Eckhaus instability occurs, leading to
convectively unstable "blurred" patterns. At the bifurcation point, stochastic
effects dominate and induce counterintuitive effects on diversity: Large
patterns, emerging for medium values of individuals' mobility, lead to rapid
species extinction, while small patterns (low mobility) promote diversity, and
high mobilities render spatial structures irrelevant. We provide a quantitative
analysis of these phenomena, employing a complex Ginzburg-Landau equation.Comment: 4 pages, 3 figures and supplementary information. To appear in Phys.
Rev. Lett
p-Wave Optical Feshbach Resonances in Yb-171
We study the use of an optical Feshbach resonance to modify the p-wave
interaction between ultracold polarized Yb-171 spin-1/2 fermions. A laser
exciting two colliding atoms to the 1S_0 + 3P_1 channel can be detuned near a
purely-long-range excited molecular bound state. Such an exotic molecule has an
inner turning point far from the chemical binding region and thus
three-body-recombination in the Feshbach resonance will be highly suppressed in
contrast to that typically seen in a ground state p-wave magnetic Feshbach
resonance. We calculate the excited molecular bound-state spectrum using a
multichannel integration of the Schr\"{o}dinger equation, including an external
perturbation by a magnetic field. From the multichannel wave functions, we
calculate the Feshbach resonance properties, including the modification of the
elastic p-wave scattering volume and inelastic spontaneous scattering rate. The
use of magnetic fields and selection rules for polarized light yields a highly
controllable system. We apply this control to propose a toy model for
three-color superfluidity in an optical lattice for spin-polarized Yb-171,
where the three colors correspond to the three spatial orbitals of the first
excited p-band. We calculate the conditions under which tunneling and on-site
interactions are comparable, at which point quantum critical behavior is
possible.Comment: 8 pages, 4 figure
Awareness, Solidarity, and Action: An Educational Model
How Extension fosters social change and innovation can be improved through the use of theory-based educational models. Educational models can serve as foundations for the conceptual designs of educational interventions. I describe, using examples from my own work, one such model: the awareness, solidarity, and action model. This three-part model involves the participant\u27s (a) becoming aware of a need for change, (b) developing solidarity with other participants around the actions to be taken, and (c) learning skills to enable action
On James Sterba’s refutation of theistic arguments to justify suffering
In his recent book Is a Good God Logically Possible? and article by the same name, James Sterba argued that the existence of significant and horrendous evils, both moral and natural, is incompatible with the existence of God. He advances the discussion by invoking three moral requirements and by creating an analogy with how the just state would address such evils, while protecting significant freedoms and rights to which all are entitled. I respond that his argument has important ambiguities and that consistent application of his moral principles will require that God remove all moral and natural evils. This would deleteriously restrict not only human moral decision making, but also the knowledge necessary to make moral judgments. He replies to this critique by appealing to the possibility of limited divine intervention, to which I rejoin with reasons why his middle ground is not viable
Sideband cooling while preserving coherences in the nuclear spin state in group-II-like atoms
We propose a method for laser cooling group-II-like atoms without changing
the quantum state of their nuclear spins, thus preserving coherences that are
usually destroyed by optical pumping. As group-II-like atoms have a
closed-shell ground state, nuclear spin and electronic degrees of freedom are
decoupled, allowing for independent manipulation. The hyperfine interaction
that couples these degrees of freedom in excited states can be suppressed
through the application of external magnetic fields. Our protocol employs
resolved-sideband cooling on the forbidden clock transition, , with quenching via coupling to the rapidly decaying state,
deep in the Paschen-Back regime. This makes it possible to laser cool neutral
atomic qubits without destroying the quantum information stored in their
nuclear spins, as shown in two examples, Yb and Sr.Comment: 4 pages, 3 figures v4: minor changes in text, changes in the
references, published versio
- …