45 research outputs found

    Local injection of pure spin current generates electric current vortices

    Full text link
    We show that local injection of pure spin current into an electrically disconnected ferromagnetic - normal-metal sandwich induces electric currents, that run along closed loops inside the device, and are powered by the source of the spin injection. Such electric currents may significantly modify voltage distribution in spin-injection devices and induce long-range tails of spin accumulation.Comment: Journal version. Improved notation, suggestions for experimental observation adde

    Electric excitation of spin resonance in antiferromagnetic conductors

    Full text link
    Antiferromagnetism couples electron spin to its orbital motion, thus allowing excitation of electron-spin transitions by an ac electric rather than magnetic field - with absorption, exceeding that of common electron spin resonance at least by four orders of magnitude. In addition to potential applications in spin electronics, this phenomenon may be used as a spectroscopy to study antiferromagnetic materials of interest - from chromium to borocarbides, cuprates, iron pnictides, and organic and heavy fermion conductors.Comment: the journal print versio

    Acceleration of Plasmoids in Waveguides by a Superhigh-Frequency Wave

    Get PDF
    Acceleration of plasmoids in waveguides by superhigh-frequency electromagnetic wav

    Exchange Coupling in a One-Dimensional Wigner Crystal

    Full text link
    We consider a long quantum wire at low electron densities. In this strong interaction regime a Wigner crystal may form, in which electrons comprise an antiferromagnetic Heisenberg spin chain. The coupling constant J is exponentially small, as it originates from tunneling of two neighboring electrons through the segregating potential barrier. We study this exponential dependence, properly accounting for the many-body effects and the finite width of the wire.Comment: 4 pages, 3 figure

    Kramers degeneracy in a magnetic field and Zeeman spin-orbit coupling in antiferromagnets

    Full text link
    In this article, I analyze the symmetries and degeneracies of electron eigenstates in a commensurate collinear antiferromagnet. In a magnetic field transverse to the staggered magnetization, a hidden anti-unitary symmetry protects double degeneracy of the Bloch eigenstates at a special set of momenta. In addition to this `Kramers degeneracy' subset, the manifold of momenta, labeling the doubly degenerate Bloch states in the Brillouin zone, may also contain an `accidental degeneracy' subset, that is not protected by symmetry and that may change its shape under perturbation. These degeneracies give rise to a substantial momentum dependence of the transverse g-factor in the Zeeman coupling, turning the latter into a spin-orbit interaction. I discuss a number of materials, where Zeeman spin-orbit coupling is likely to be present, and outline the simplest properties and experimental consequences of this interaction, that may be relevant to systems from chromium to borocarbides, cuprates, hexaborides, iron pnictides, as well as organic and heavy fermion conductors.Comment: 16+ pages, extended version of arXiv:0805.0378; revised versio

    Superconducting Quantum Critical Point

    Full text link
    We study the properties of a quantum critical point which develops in a BCS superconductor when pair-breaking suppresses the transition temperature to zero. The pair fluctuations are characterized by a dynamical critical exponent z=2. Except for very low temperatures, anomalous contribution to the conductivity is proportional to the square root of T in three dimensions, but to 1/T in two dimensions. At lowest temperatures, the conductivity correction varies as T to the power 1/4 in three dimensions, and as ln(1/T) in two.Comment: 3 pages, 3 Postscript figures, Late

    Hall Effect in Nested Antiferromagnets Near the Quantum Critical Point

    Full text link
    We investigate the behavior of the Hall coefficient in the case of antiferromagnetism driven by Fermi surface nesting, and find that the Hall coefficient should abruptly increase with the onset of magnetism, as recently observed in vanadium doped chromium. This effect is due to the sudden removal of flat portions of the Fermi surface upon magnetic ordering. Within this picture, the Hall coefficient should scale as the square of the residual resistivity divided by the impurity concentration, which is consistent with available data.Comment: published version; an accidental interchange in the quoting of sigmaxyzsigma_{xyz} analytic dependencies was correcte

    Spin exchange in quantum rings and wires in the Wigner-crystal limit

    Full text link
    We present a controlled method for computing the exchange coupling in strongly correlated one-dimensional electron systems. It is based on the asymptotically exact relation between the exchange constant and the pair-correlation function of spinless electrons. Explicit results are obtained for thin quantum rings with realistic Coulomb interactions, by calculating this function via a many-body instanton approach.Comment: 7 pages, 2 figures. Changes in the text and figures to improve readability; added reference

    Fluctuation Conductivity in Unconventional Superconductors near Critical Disorder

    Full text link
    The fluctuation conductivity σs\sigma_{\rm s} in bulk superconductors with non s-wave pairing and with nonmagnetic disorder of strength DD is studied at low TT and within the Gaussian approximation. It is shown by assuming a quasi two-dimensional (2D) electronic state that, only if the gap function d_\mu({\p}) is, as in a 2D p-wave pairing state, linear in the in-plane (relative) momentum {\p}_\perp, the in-plane fluctuation conductivity on the line D=DcD=D_c is weakly divergent in low TT limit. The present result may be useful in clarifying the true gap function of spin-triplet Sr2RuO4{\rm Sr_2RuO_4} through resistivity measurements.Comment: 8 pages, 1 figure, to be published in J. Phys. Soc. Jpn. 70, No.10 (2001
    corecore