90,976 research outputs found
Modulated Branching Processes, Origins of Power Laws and Queueing Duality
Power law distributions have been repeatedly observed in a wide variety of
socioeconomic, biological and technological areas. In many of the observations,
e.g., city populations and sizes of living organisms, the objects of interest
evolve due to the replication of their many independent components, e.g.,
births-deaths of individuals and replications of cells. Furthermore, the rates
of the replication are often controlled by exogenous parameters causing periods
of expansion and contraction, e.g., baby booms and busts, economic booms and
recessions, etc. In addition, the sizes of these objects often have reflective
lower boundaries, e.g., cities do not fall bellow a certain size, low income
individuals are subsidized by the government, companies are protected by
bankruptcy laws, etc.
Hence, it is natural to propose reflected modulated branching processes as
generic models for many of the preceding observations. Indeed, our main results
show that the proposed mathematical models result in power law distributions
under quite general polynomial Gartner-Ellis conditions, the generality of
which could explain the ubiquitous nature of power law distributions. In
addition, on a logarithmic scale, we establish an asymptotic equivalence
between the reflected branching processes and the corresponding multiplicative
ones. The latter, as recognized by Goldie (1991), is known to be dual to
queueing/additive processes. We emphasize this duality further in the
generality of stationary and ergodic processes.Comment: 36 pages, 2 figures; added references; a new theorem in Subsection
4.
A phase 1 dose-escalation and expansion study of binimetinib (MEK162), a potent and selective oral MEK1/2 inhibitor
Q-CSMA: Queue-Length Based CSMA/CA Algorithms for Achieving Maximum Throughput and Low Delay in Wireless Networks
Recently, it has been shown that CSMA-type random access algorithms can
achieve the maximum possible throughput in ad hoc wireless networks. However,
these algorithms assume an idealized continuous-time CSMA protocol where
collisions can never occur. In addition, simulation results indicate that the
delay performance of these algorithms can be quite bad. On the other hand,
although some simple heuristics (such as distributed approximations of greedy
maximal scheduling) can yield much better delay performance for a large set of
arrival rates, they may only achieve a fraction of the capacity region in
general. In this paper, we propose a discrete-time version of the CSMA
algorithm. Central to our results is a discrete-time distributed randomized
algorithm which is based on a generalization of the so-called Glauber dynamics
from statistical physics, where multiple links are allowed to update their
states in a single time slot. The algorithm generates collision-free
transmission schedules while explicitly taking collisions into account during
the control phase of the protocol, thus relaxing the perfect CSMA assumption.
More importantly, the algorithm allows us to incorporate mechanisms which lead
to very good delay performance while retaining the throughput-optimality
property. It also resolves the hidden and exposed terminal problems associated
with wireless networks.Comment: 12 page
Maximizing sum rate and minimizing MSE on multiuser downlink: Optimality, fast algorithms and equivalence via max-min SIR
Maximizing the minimum weighted SIR, minimizing the weighted sum MSE and maximizing the weighted sum rate in a multiuser downlink system are three important performance objectives in joint transceiver and power optimization, where all the users have a total power constraint. We show that, through connections with the nonlinear Perron-Frobenius theory, jointly optimizing power and beamformers in the max-min weighted SIR problem can be solved optimally in a distributed fashion. Then, connecting these three performance objectives through the arithmetic-geometric mean inequality and nonnegative matrix theory, we solve the weighted sum MSE minimization and weighted sum rate maximization in the low to moderate interference regimes using fast algorithms
Elastic Deformation of Soft Coatings Due to Lubrication Forces
Elastic deformation of rigid materials with soft coatings (stratified
materials) due to lubrication forces can also alter the interpretation of
dynamic surface forces measurements and prevent contact formation between
approaching surfaces. Understanding the role of elastic deformation on the
process of fluid drainage is necessary, and the case where one (or both) of the
interacting materials consists of a rigid substrate with a soft coating is
still limited. We combine lubrication theory and solid linear elasticity to
describe the dynamic of fluid drainage past a compliant stratified boundary.
The analysis presented covers the full range of coating thicknesses, from an
elastic foundation to a half-space for an incomressible coating. We decouple
the individual contributions of the coating thickness and material properties
on the elastic deformation, hydrodynamic forces, and fluid film thickness. We
obtain a simple expression for the shift in contact position during force
measurements that is valid for many experimental conditions. We compare
directly the effect of stratification on the out-of-contact deformation to the
well-known effect of stratification on indentation. We show that corrections
developed for stratification in contact mechanics are not applicable to
elastohydrodynamic deformation. Finally, we provide generalized contour maps
that can be employed directly to estimate the elastic deformation present in
most dynamic surface force measurements
IN-SYNC. VIII. Primordial Disk Frequencies in NGC 1333, IC 348, and the Orion A Molecular Cloud
In this paper, we address two issues related to primordial disk evolution in
three clusters (NGC 1333, IC 348, and Orion A) observed by the INfrared Spectra
of Young Nebulous Clusters (IN-SYNC) project. First, in each cluster, averaged
over the spread of age, we investigate how disk lifetime is dependent on
stellar mass. The general relation in IC 348 and Orion A is that primordial
disks around intermediate mass stars (2--5) evolve faster than those
around loss mass stars (0.1--1), which is consistent with previous
results. However, considering only low mass stars, we do not find a significant
dependence of disk frequency on stellar mass. These results can help to better
constrain theories on gas giant planet formation timescales. Secondly, in the
Orion A molecular cloud, in the mass range of 0.35--0.7, we provide
the most robust evidence to date for disk evolution within a single cluster
exhibiting modest age spread. By using surface gravity as an age indicator and
employing 4.5 excess as a primordial disk diagnostic, we observe a
trend of decreasing disk frequency for older stars. The detection of
intra-cluster disk evolution in NGC 1333 and IC 348 is tentative, since the
slight decrease of disk frequency for older stars is a less than 1-
effect.Comment: 25 pages, 26 figures; submitted for publication (ApJ
Achieving Effective Innovation Based On TRIZ Technological Evolution
Organised by: Cranfield UniversityThis paper outlines the conception of effective innovation and discusses the method to achieve it. Effective
Innovation is constrained on the path of technological evolution so that the corresponding path must be
detected before conceptual design of the product. The process of products technological evolution is a
technical developing process that the products approach to Ideal Final Result (IFR). During the process, the
sustaining innovation and disruptive innovation carry on alternately. By researching and forecasting potential
techniques using TRIZ technological evolution theory, the effective innovation can be achieved finally.Mori Seiki – The Machine Tool Compan
- …
