222 research outputs found

    Non-magnetic aspect sensitive auroral echoes from the lower E region observed at 50 MHz

    Get PDF

    Molecular-beam epitaxy of (Zn,Mn)Se on Si(100)

    Full text link
    We have investigated the growth by molecular-beam epitaxy of the II-VI diluted magnetic semiconductor (Zn,Mn)Se on As-passivated Si(100) substrates. The growth start has been optimized by using low-temperature epitaxy. Surface properties were assessed by Nomarski and scanning electron microscopy. Optical properties of (Zn,Mn)Se have been studied by photoluminescence and a giant Zeeman splitting of up to 30 meV has been observed. Our observations indicate a high crystalline quality of the epitaxial films.Comment: To be published in Applied Physics Letter

    VHF radar observations of turbulent structures in the polar mesopause region

    Get PDF

    BCS theory of hadronic matter at high densities

    Full text link
    The equilibrium between the so-called 2SC and CFL phases of strange quark matter at high densities is investigated in the framework of a simple schematic model of the NJL type. Equal densities are assumed for quarks u,du,d and ss. The 2SC phase is here described by a color-flavor symmetric state, in which the quark numbers are independent of the color-flavor combination. In the CFL phase the quark numbers depend on the color-flavor combination, that is, the number of quarks associated with the color-flavor combinations ur,dg,sbur,dg,sb is different from the number of quarks associated with the color flavor combinations ug,ub,dr,db,sr,sgug,ub,dr,db,sr,sg. We find that the 2SC phase is stable for a chemical potential μ\mu below μc=0.505\mu_c=0.505 GeV, while the CFL phase is stable above, the equilibrium pressure being Pc=0.003P_c=0.003 GeV4^4. We have used a 3-momentum regularizing cutoff Λ=0.8\Lambda=0.8 GeV, which is somewhat larger than is usual in NJL type models. This should be adequate if the relevant chemical potential does not exceed 0.6 GeV.Comment: 6 figures, 13 page

    Gapless phases of color-superconducting matter

    Full text link
    We discuss gapless color superconductivity for neutral quark matter in beta equilibrium at zero as well as at nonzero temperature. Basic properties of gapless superconductors are reviewed. The current progress and the remaining problems in the understanding of the phase diagram of strange quark matter are discussed.Comment: 8 pages, 2 figures. Plenary talk at Strangeness in Quark Matter 2004 (SQM2004), Cape Town, South Africa, 15-20 September 2004. Minor correction

    Two lectures on color superconductivity

    Full text link
    The first lecture provides an introduction to the physics of color superconductivity in cold dense quark matter. The main color superconducting phases are briefly described and their properties are listed. The second lecture covers recent developments in studies of color superconducting phases in neutral and beta-equilibrated matter. The properties of gapless color superconducting phases are discussed.Comment: 56 pages, 9 figures. Minor corrections and references added. Lectures delivered at the IARD 2004 conference, Saas Fee, Switzerland, June 12 - 19, 2004, and at the Helmholtz International Summer School and Workshop on Hot points in Astrophysics and Cosmology, JINR, Dubna, Russia, August 2 - 13, 200

    Static perfect fluids with Pant-Sah equations of state

    Full text link
    We analyze the 3-parameter family of exact, regular, static, spherically symmetric perfect fluid solutions of Einstein's equations (corresponding to a 2-parameter family of equations of state) due to Pant and Sah and "rediscovered" by Rosquist and the present author. Except for the Buchdahl solutions which are contained as a limiting case, the fluids have finite radius and are physically realistic for suitable parameter ranges. The equations of state can be characterized geometrically by the property that the 3-metric on the static slices, rescaled conformally with the fourth power of any linear function of the norm of the static Killing vector, has constant scalar curvature. This local property does not require spherical symmetry; in fact it simplifies the the proof of spherical symmetry of asymptotically flat solutions which we recall here for the Pant-Sah equations of state. We also consider a model in Newtonian theory with analogous geometric and physical properties, together with a proof of spherical symmetry of the asymptotically flat solutions.Comment: 32 p., Latex, minor changes and correction
    • …
    corecore