75 research outputs found

    Pathogenesis and treatment of oral candidosis

    Get PDF
    Oral infections caused by yeast of the genus Candida and particularly Candida albicans (oral candidoses) have been recognised throughout recorded history. However, since the 1980s a clear surge of interest and associated research into these infections have occurred. This has largely been due to an increased incidence of oral candidosis over this period, primarily because of the escalation in HIV-infection and the AIDS epidemic. In addition, changes in medical practice leading to a greater use of invasive clinical procedures and a more widespread use of immunosuppressive therapies have also contributed to the problem. Whilst oral candidosis has previously been considered to be a disease mainly of the elderly and very young, its occurrence throughout the general population is now recognised. Candida are true ‘opportunistic pathogens’ and only instigate oral infection when there is an underlying predisposing condition in the host. Treatment of these infections has continued (and in some regards continues) to be problematic because of the potential toxicity of traditional antifungal agents against host cells. The problem has been compounded by the emergence of Candida species other than C. albicans that have inherent resistance against traditional antifungals. The aim of this review is to give the reader a contemporary overview of oral candidosis, the organisms involved, and the management strategies that are currently employed or could be utilised in the future

    Differential adherence and expression of virulence traits by Candida albicans and Candida parapsilosis in mono- and dual-species cultures in artificial saliva

    Get PDF
    AIMS: To evaluate specific virulence factors of Candida albicans and Candida parapsilosis clinical oral isolates in mono- and dual-species culture in the presence of artificial saliva. METHODS AND RESULTS: Two of the strains used in this study were isolated from co-infection (C. albicans AM and C. parapsilosis AM2), and the other two were isolated from single infection (C. albicans AC and C. parapsilosis AD). The number of adhered yeast cells was measured and their enzymatic activity was determined simultaneously. In mono-species culture, C. parapsilosis strains adhered to a higher extent to the surface in comparison with the C. albicans strains. In dual-species culture, the C. parapsilosis strains adhered more in the presence of C. albicans AM. Interestingly, C. albicans AM and C. parapsilosis AD adhered to a higher extent when compared with all other co-cultures. In dual-species culture, the enzymatic activity of C. parapsilosis strains in the presence of C. albicans AC was higher than in the presence of C. albicans AM. CONCLUSIONS: The virulence factors of C. albicans and C. parapsilosis differ from strain to strain and are influenced by the presence of other species in culture. SIGNIFICANCE AND IMPACT OF THE STUDY: To understand the expression of virulence factors in Candida dual-species systems.This work was supported by Portuguese Foundation for Science and Technology (FCT) through the grant SFRH/BPD/20987/2004 attributed to Claudia Botelho

    Candida bracarensis: Evaluation of virulence factors and its tolerance to Amphotericin B and Fluconazole

    Get PDF
    Candida bracarensis is an uncommon Candida species found during an epidemiological study of candidiasis performed in Braga, Portugal. Initially, it was identified as C. glabrata, but recently detailed analyses pointed out their differences. So, little information is still available about C. bracarensis virulence factors and antifungal susceptibilities. Therefore, the main goal of this work is to evaluate the ability of C. bracarensis to form biofilms, to produce hydrolytic enzymes (proteases, phospholipases and hemolysins), as well as its susceptibility to amphotericin B and fluconazole. It was shown, for the first time, that all C. bracarensis strains were able to form biofilms and display proteinase and hemolytic activities. Moreover, although planktonic cells presented antifungal susceptibility, amphotericin B and fluconazole were unable to inhibit biofilm formation and eradicate pre-formed biofilms. Due to the propensity of C. bracarensis to display antifungal resistance and virulence attributes, the control of these emerging pathogens is recommended.This work was supported by the projects PTDC/SAU-MIC/119069/2010, PEst-OE/EQB/LA0023/2013, from Fundação para a Ciência e Tecnologia (FCT), Portugal and ‘‘BioHealth—Biotechnology and Bioengineering approaches to improve health quality’’, Ref. NORTE-07-0124FEDER-000027, co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER. The authors also acknowledge the project ‘‘Consolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEB/IBB’’, Ref. FCOMP-01-0124-FEDER027462

    Examination of potential virulence factors of Candida tropicalis clinical isolates from hospitalized patients

    Get PDF
    Candida tropicalis has been reported to be one of the Candida species which is most likely to cause bloodstream and urinary tract infections in hospitalized patients. Accordingly, the aim of this study was to characterize the virulence of C. tropicalis by assessing antifungal susceptibility and comparing the expression of several virulence factors. This study was conducted with seven isolates of C. tropicalis from urine and blood cultures and from central venous catheter. C. tropicalis ATCC 750 was used as reference strain. Yeasts adhered (2 h) to epithelial cells and silicone and 24 h biofilm biomass were determined by crystal violet staining. Pseudohyphae formation ability was determined after growth in fetal bovine serum. Enzymes production (hemolysins, proteases, phospholipases) was assessed by halo formation on agar plates. Susceptibility to antifungal agents was determined by E-test. Regarding adhesion, it can be highlighted that C. tropicalis strains adhered significantly more to epithelium than to silicone. Furthermore, all C. tropicalis strains were able to form biofilms and to express total hemolytic activity. However, protease was only produced by two isolates from urine and by the isolates from catheter and blood. Moreover, only one C. tropicalis (from catheter) was phospholipase positive. All isolates were susceptible to voriconazole, fluconazole and amphotericin B. Four strains were susceptible-dose dependent to itraconazole and one clinical isolate was found to be resistant
    corecore