7 research outputs found

    Gut microbiota dysbiosis is associated with altered tryptophan metabolism and dysregulated inflammatory response in severe COVID-19

    Get PDF
    The clinical course of the 2019 coronavirus disease (COVID-19) is variable and to a substantial degree still unpredictable, especially in persons who have neither been vaccinated nor recovered from previous infection. We hypothesized that disease progression and inflammatory responses were associated with alterations in the microbiome and metabolome. To test this, we integrated metagenome, metabolome, cytokine, and transcriptome profiles of longitudinally collected samples from hospitalized COVID-19 patients at the beginning of the pandemic (before vaccines or variants of concern) and non-infected controls, and leveraged detailed clinical information and post-hoc confounder analysis to identify robust within- and cross-omics associations. Severe COVID-19 was directly associated with a depletion of potentially beneficial intestinal microbes mainly belonging to Clostridiales, whereas oropharyngeal microbiota disturbance appeared to be mainly driven by antibiotic use. COVID-19 severity was also associated with enhanced plasma concentrations of kynurenine, and reduced levels of various other tryptophan metabolites, lysophosphatidylcholines, and secondary bile acids. Decreased abundance of Clostridiales potentially mediated the observed reduction in 5-hydroxytryptophan levels. Moreover, altered plasma levels of various tryptophan metabolites and lower abundances of Clostridiales explained significant increases in the production of IL-6, IFNγ and/or TNFα. Collectively, our study identifies correlated microbiome and metabolome alterations as a potential contributor to inflammatory dysregulation in severe COVID-19

    Clinically used broad-spectrum antibiotics compromise inflammatory monocyte-dependent antibacterial defense in the lung

    Get PDF
    Hospital-acquired pneumonia (HAP) is associated with high mortality and costs, and frequently caused by multidrug-resistant (MDR) bacteria. Although prior antimicrobial therapy is a major risk factor for HAP, the underlying mechanism remains incompletely understood. Here, we demonstrate that antibiotic therapy in hospitalized patients is associated with decreased diversity of the gut microbiome and depletion of short-chain fatty acid (SCFA) producers. Infection experiments with mice transplanted with patient fecal material reveal that these antibiotic-induced microbiota perturbations impair pulmonary defense against MDR Klebsiella pneumoniae. This is dependent on inflammatory monocytes (IMs), whose fatty acid receptor (FFAR)2/3-controlled and phagolysosome-dependent antibacterial activity is compromized in mice transplanted with antibiotic-associated patient microbiota. Collectively, we characterize how clinically relevant antibiotics affect antimicrobial defense in the context of human microbiota, and reveal a critical impairment of IM´s antimicrobial activity. Our study provides additional arguments for the rational use of antibiotics and offers mechanistic insights for the development of novel prophylactic strategies to protect high-risk patients from HAP

    III. ABTEILUNG. BIBLIOGRAPHISCHE NOTIZEN UND MITTEILUNGEN

    No full text
    corecore