356 research outputs found

    Changes in the Sea-Ice Brine Community During the Spring-Summer Transition, McMurdo Sound, Antarctica .2. Phagotrophic Protists

    Get PDF
    The land-fast sea-ice brine contains a diverse phagotrophic protist assemblage consisting of \u3c 5 mum heterotrophic flagellates, Cryothecomonas spp., heterotrophic dinoflagellates, and heterotrophic and mixotrophic ciliates. Fine-scale horizontal spatial variability is a feature of this assemblage; samples taken within 1 m of each other can be dominated by different heterotrophic protists. Many of the larger heterotrophic protists found in the brine are also found in the water column. The photosynthetic ciliate Mesodinium rubrum is also common. In mid to late austral spring, the heterotrophic assemblage accounts for ca 10% of the total protist biomass in the brine and is dominated by Cryothecomonas spp. This flagellate can reach densities of over 106 cells l-1 of brine. In the early austral summer, ciliates (primarily Strombidium spp., Mesodinium rubrum and Didinium spp.) and heterotrophic dinoflagellates (primarily a small Gymnodinium sp. and Polykrikos sp.) increase in abundance in the brine. Ciliate densities of ≥ 3 x 103 l-1 and heterotrophic dinoflagellate densities of 104 cells l-1 are common in the brine during early summer. By the end of January (just prior to ice decay and break-out), heterotrophic flagellates and ciliates can account for 50 % of the protist biomass

    Genetic heterogeneity and trans regulators of gene expression

    Get PDF
    Heterogeneity poses a challenge to linkage mapping. Here, we apply a latent class extension of Haseman-Elston regression to expression phenotypes with significant evidence of linkage to trans regulators in 14 large pedigrees. We test for linkage, accounting for heterogeneity, and classify individual families as "linked" and "unlinked" on the basis of their contribution to the overall evidence of linkage

    Diabetes reduces bone marrow and circulating porcine endothelial progenitor cells, an effect ameliorated by atorvastatin and independent of cholesterol

    Get PDF
    Bone marrow derived endothelial progenitor cells (EPCs) are early precursors of mature endothelial cells which replenish aging and damaged endothelial cells. The authors studied a diabetic swine model to determine if induction of DM adversely affects either bone marrow or circulating EPCs and whether a HMG-CoA reductase inhibitor (statin) improves development and recruitment of EPCs in the absence of cholesterol lowering. Streptozotocin was administered to Yorkshire pigs to induce DM. One month after induction, diabetic pigs were treated with atorvastatin (statin, n = 10), ezetimibe (n = 10) or untreated (n = 10) and evaluated for number of bone marrow and circulating EPCs and femoral artery endothelial function. There was no effect of either medication on cholesterol level. One month after induction of DM prior to administration of drugs, the number of bone marrow and circulating EPCs significantly decreased (P < 0.0001) compared to baseline. Three months after DM induction, the mean proportion of circulating EPCs significantly increased in the atorvastatin group, but not in the control or ezetimibe groups. The control group showed progressive reduction in percentage of flow mediated vasodilatation (no dilatation at 3 months) whereas the atorvastatin group and ezetimibe exhibited vasodilatation, 6% and 4% respectively. DM results in significant impairment of bone marrow and circulating EPCs as well as endothelial function. The effect is ameliorated, in part, by atorvastatin independent of its cholesterol lowering effect. These data suggest a model wherein accelerated atherosclerosis seen with DM may, in part, result from reduction in EPCs which may be ameliorated by treatment with a statin

    A Small Molecule that Induces Intrinsic Pathway Apoptosis with Unparalleled Speed

    Get PDF
    Apoptosis is generally believed to be a process thatrequires several hours, in contrast to non-programmed forms of cell death that can occur in minutes. Our findings challenge the time-consuming nature of apoptosis as we describe the discovery and characterization of a small molecule, named Raptinal, which initiates intrinsic pathway caspase-dependent apoptosis within minutes in multiple cell lines. Comparison to a mechanistically diverse panel of apoptotic stimuli reveals that Raptinal-induced apoptosis proceeds with unparalleled speed. The rapid phenotype enabled identification of the criticalroles of mitochondrial voltage-dependent anion channel function, mitochondrial membrane potential/coupled respiration, and mitochondrial complex I, III, and IV function for apoptosis induction. Use of Raptinal in whole organisms demonstrates its utility for studying apoptosis invivo for a variety of applications. Overall, rapid inducers of apoptosis are powerful tools that will be used in a variety of settings to generate further insight into the apoptotic machinery. Palchaudhuri etal. describe the discovery of a small molecule called "Raptinal" that induces unusually rapid apoptotic cell death via the intrinsic pathway. Their work describes the utility of Raptinal as a tool for apoptosis induction relative to other available small molecules

    Factors Associated with Response to Acetylcholinesterase Inhibition in Dementia:A Cohort Study from a Secondary Mental Health Care Case Register in London

    Get PDF
    Background: Acetylcholinesterase inhibitors (AChEIs) are widely used to delay cognitive decline in Alzheimer's disease. Observational studies in routine clinical practice have shown cognitive improvement in some groups of patients receiving these agents but longitudinal trajectories before and after AChEI initiation have not previously been considered.  Objectives: To compare trajectories of cognitive function before and after AChEI initiation and investigate predictors of these differences.  Method: A retrospective longitudinal study was constructed using data from 2460 patients who received AChEIs and who had routine data on cognitive function (Mini-Mental State Examination; MMSE) before and after AChEI initiation. Longitudinal MMSE change was modelled using three-piece linear mixed models with the following segments: 0-12 months prior to AChEI initiation, 0-6 months and 6-36 months after initiation.  Results: MMSE decline was reversed (in that the slope was improved by an average 4.2 units per year, 95% CI 3.5-4.8) during the 6-month period following AChEI initiation compared with the slope in the one year period before AChEI initiation. The slope in the period from 6-36 months following AChEI initiation returned to the pre-initiation downward trajectory. The differences in slopes in the 1 year period prior to AChEI initiation and in the 6 months after initiation were smaller among those with higher MMSE scores at the time of AChEI initiation, among those who received a vascular dementia diagnosis at any point, and among those receiving antipsychotic agents.  Conclusion: In this naturalistic observational study, changes in cognitive trajectories around AChEI initiation were similar to those reported in randomised controlled trials. The magnitude of the difference in slopes between the 1 year period prior to AChEI initiation and the 6 month period after AChEI initiation was related to level of cognitive function at treatment initiation, vascular comorbidity and antipsychotic use

    On the Use of Variance per Genotype as a Tool to Identify Quantitative Trait Interaction Effects: A Report from the Women's Genome Health Study

    Get PDF
    Testing for genetic effects on mean values of a quantitative trait has been a very successful strategy. However, most studies to date have not explored genetic effects on the variance of quantitative traits as a relevant consequence of genetic variation. In this report, we demonstrate that, under plausible scenarios of genetic interaction, the variance of a quantitative trait is expected to differ among the three possible genotypes of a biallelic SNP. Leveraging this observation with Levene's test of equality of variance, we propose a novel method to prioritize SNPs for subsequent gene–gene and gene–environment testing. This method has the advantageous characteristic that the interacting covariate need not be known or measured for a SNP to be prioritized. Using simulations, we show that this method has increased power over exhaustive search under certain conditions. We further investigate the utility of variance per genotype by examining data from the Women's Genome Health Study. Using this dataset, we identify new interactions between the LEPR SNP rs12753193 and body mass index in the prediction of C-reactive protein levels, between the ICAM1 SNP rs1799969 and smoking in the prediction of soluble ICAM-1 levels, and between the PNPLA3 SNP rs738409 and body mass index in the prediction of soluble ICAM-1 levels. These results demonstrate the utility of our approach and provide novel genetic insight into the relationship among obesity, smoking, and inflammation
    corecore