2 research outputs found

    Anti-reflective coating materials: A holistic review from PV perspective

    No full text
    The solar photovoltaic (PV) cell is a prominent energy harvesting device that reduces the strain in the conventional energy generation approach and endorses the prospectiveness of renewable energy. Thus, the exploration in this ever-green field is worth the effort. From the power conversion efficiency standpoint of view, PVs are consistently improving, and when analyzing the potential areas that can be advanced, more and more exciting challenges are encountered. One such crucial challenge is to increase the photon availability for PV conversion. This challenge is solved using two ways. First, by suppressing the reflection at the interface of the solar cell, and the other way is to enhance the optical pathlength inside the cell for adequate absorption of the photons. Our review addresses this challenge by emphasizing the various strategies that aid in trapping the light in the solar cells. These strategies include the usage of antireflection coatings (ARCs) and light-trapping structures. The primary focus of this study is to review the ARCs from a PV application perspective based on various materials, and it highlights the development of ARCs from more than the past three decades covering the structure, fabrication techniques, optical performance, features, and research potential of ARCs reported. More importantly, various ARCs researched with different classes of PV cells, and their impact on its efficiency is given a special attention. To enhance the optical pathlength, and thus the absorption in solar PV devices, an insight about the advanced light-trapping techniques that deals with the concept of plasmonics, spectral modification, and other prevailing innovative light-trapping structures approaching the Yablonovitch limit is discussed. An extensive collection of information is presented as tables under each core review section. Further, we take a step forward to brief the effects of ageing on ARCs and their influence on the device performance. Finally, we summarize the review of ARCs on the basis of structures, materials, optical performance, multifunctionality, stability, and cost-effectiveness along with a master table comparing the selected high-performance ARCs with perfect AR coatings. Also, from the discussed significant challenges faced by ARCs and future outlook; this work directs the researchers to identify the area of expertise where further research analysis is needed in near future. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

    A holistic review of the present and future drivers of the renewable energy mix in Maharashtra, State of India

    No full text
    A strong energy mix of Renewable Energy Sources (RESs) is needed for sustainable development in the electricity sector. India stands as one of the fastest developing countries in terms of RES production. In this framework, the main objective of this review is to critically scrutinize the Maharashtra state energy landscape to discover the gaps, barriers, and challenges therein and to provide recommendations and suggestions for attaining the RES target by 2022. This work begins with a discussion about the RES trends in various developing countries. Subsequently, it scrutinizes the installed capacity of India, reporting that Maharashtra state holds a considerable stake in the Indian energy mix. A further examination of the state energy mix is carried out by comparing the current and future targets of the state action plan. It is found that the installed capacity of RESs accounts for about 22% of the state energy mix. Moreover, the current installed capacity trend is markedly different from the goals set out in the action plan of the state. Notably, the installed capacity of solar energy is four times less than the target for 2020. Importantly, meeting the targeted RES capacity for 2022 presents a great challenge to the state. Considering this, an analysis of the state’s strengths, barriers, and challenges is presented. Moreover, strong suggestions and recommendations are provided to clear the track to reach the desired destination. This can be useful for the government agencies, research community, private investors, policymakers, and stakeholders involved in building a sustainable energy system for the future
    corecore