16 research outputs found
On the maximum size of an anti-chain of linearly separable sets and convex pseudo-discs
We show that the maximum cardinality of an anti-chain composed of
intersections of a given set of n points in the plane with half-planes is close
to quadratic in n. We approach this problem by establishing the equivalence
with the problem of the maximum monotone path in an arrangement of n lines. For
a related problem on antichains in families of convex pseudo-discs we can
establish the precise asymptotic bound: it is quadratic in n. The sets in such
a family are characterized as intersections of a given set of n points with
convex sets, such that the difference between the convex hulls of any two sets
is nonempty and connected.Comment: 10 pages, 3 figures. revised version correctly attributes the idea of
Section 3 to Tverberg; and replaced k-sets by "linearly separable sets" in
the paper and the title. Accepted for publication in Israel Journal of
Mathematic
On Arrangements of Orthogonal Circles
In this paper, we study arrangements of orthogonal circles, that is,
arrangements of circles where every pair of circles must either be disjoint or
intersect at a right angle. Using geometric arguments, we show that such
arrangements have only a linear number of faces. This implies that orthogonal
circle intersection graphs have only a linear number of edges. When we restrict
ourselves to orthogonal unit circles, the resulting class of intersection
graphs is a subclass of penny graphs (that is, contact graphs of unit circles).
We show that, similarly to penny graphs, it is NP-hard to recognize orthogonal
unit circle intersection graphs.Comment: Appears in the Proceedings of the 27th International Symposium on
Graph Drawing and Network Visualization (GD 2019
The history of degenerate (bipartite) extremal graph problems
This paper is a survey on Extremal Graph Theory, primarily focusing on the
case when one of the excluded graphs is bipartite. On one hand we give an
introduction to this field and also describe many important results, methods,
problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version
of our survey presented in Erdos 100. In this version 2 only a citation was
complete
Every Large Point Set contains Many Collinear Points or an Empty Pentagon
We prove the following generalised empty pentagon theorem: for every integer
, every sufficiently large set of points in the plane contains
collinear points or an empty pentagon. As an application, we settle the
next open case of the "big line or big clique" conjecture of K\'ara, P\'or, and
Wood [\emph{Discrete Comput. Geom.} 34(3):497--506, 2005]