16 research outputs found

    On the maximum size of an anti-chain of linearly separable sets and convex pseudo-discs

    Full text link
    We show that the maximum cardinality of an anti-chain composed of intersections of a given set of n points in the plane with half-planes is close to quadratic in n. We approach this problem by establishing the equivalence with the problem of the maximum monotone path in an arrangement of n lines. For a related problem on antichains in families of convex pseudo-discs we can establish the precise asymptotic bound: it is quadratic in n. The sets in such a family are characterized as intersections of a given set of n points with convex sets, such that the difference between the convex hulls of any two sets is nonempty and connected.Comment: 10 pages, 3 figures. revised version correctly attributes the idea of Section 3 to Tverberg; and replaced k-sets by "linearly separable sets" in the paper and the title. Accepted for publication in Israel Journal of Mathematic

    On Arrangements of Orthogonal Circles

    Full text link
    In this paper, we study arrangements of orthogonal circles, that is, arrangements of circles where every pair of circles must either be disjoint or intersect at a right angle. Using geometric arguments, we show that such arrangements have only a linear number of faces. This implies that orthogonal circle intersection graphs have only a linear number of edges. When we restrict ourselves to orthogonal unit circles, the resulting class of intersection graphs is a subclass of penny graphs (that is, contact graphs of unit circles). We show that, similarly to penny graphs, it is NP-hard to recognize orthogonal unit circle intersection graphs.Comment: Appears in the Proceedings of the 27th International Symposium on Graph Drawing and Network Visualization (GD 2019

    The history of degenerate (bipartite) extremal graph problems

    Full text link
    This paper is a survey on Extremal Graph Theory, primarily focusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version of our survey presented in Erdos 100. In this version 2 only a citation was complete

    Every Large Point Set contains Many Collinear Points or an Empty Pentagon

    Get PDF
    We prove the following generalised empty pentagon theorem: for every integer 2\ell \geq 2, every sufficiently large set of points in the plane contains \ell collinear points or an empty pentagon. As an application, we settle the next open case of the "big line or big clique" conjecture of K\'ara, P\'or, and Wood [\emph{Discrete Comput. Geom.} 34(3):497--506, 2005]

    On the Number of Balanced Lines

    No full text

    Rational Polygons: Odd Compression Ratio and Odd Plane Coverings

    No full text

    On the Complexity of Arrangements of Circles in the Plane

    No full text

    On the Union of Arithmetic Progressions

    No full text
    corecore