18 research outputs found
A Repeated Triple Lysine Motif Anchors Complexes Containing Bone Sialoprotein and the Type XI Collagen A1 Chain Involved in Bone Mineralization
While details remain unclear, initiation of woven bone mineralization is believed to be mediated by collagen and potentially nucleated by bone sialoprotein (BSP). Interestingly, our recent publication showed that BSP and type XI collagen form complexes in mineralizing osteoblastic cultures. To learn more, we examined the protein composition of extracellular sites of de novo hydroxyapatite deposition which were enriched in BSP and Col11a1 containing an alternatively spliced â6bâ exonal sequence. An alternate splice variant â6aâ sequence was not similarly co-localized. BSP and Col11a1 co-purify upon ion-exchange chromatography or immunoprecipitation. Binding of the Col11a1 â6bâ exonal sequence to bone sialoprotein was demonstrated with overlapping peptides. Peptide 3, containing three unique lysine-triplet sequences, displayed the greatest binding to osteoblastic cultures; peptides containing fewer lysine triplet motifs or derived from the â6aâ exon yielded dramatically lower binding. Similar results were obtained with 6-carboxyfluorescein (FAM)-conjugated peptides and western blots containing extracts from osteoblastic cultures. Mass spectroscopic mapping demonstrated that FAM-peptide 3 bound to 90 kDa BSP and its 18 to 60 kDa fragments, as well as to 110 kDa nucleolin. In osteoblastic cultures, FAM-peptide 3 localized to biomineralization foci (site of BSP) and to nucleoli (site of nucleolin). In bone sections, biotin-labeled peptide 3 bound to sites of new bone formation which were co-labeled with anti-BSP antibodies. These results establish the fluorescent peptide 3 conjugate as the first nonantibody-based method to identify BSP on western blots and in/on cells. Further examination of the â6bâ splice variant interactions will likely reveal new insights into bone mineralization during development