4,557 research outputs found
The Use of HepRep in GLAST
HepRep is a generic, hierarchical format for description of graphics
representables that can be augmented by physics information and relational
properties. It was developed for high energy physics event display applications
and is especially suited to client/server or component frameworks. The GLAST
experiment, an international effort led by NASA for a gamma-ray telescope to
launch in 2006, chose HepRep to provide a flexible, extensible and maintainable
framework for their event display without tying their users to any one graphics
application. To support HepRep in their GUADI infrastructure, GLAST developed a
HepRep filler and builder architecture. The architecture hides the details of
XML and CORBA in a set of base and helper classes allowing physics experts to
focus on what data they want to represent. GLAST has two GAUDI services:
HepRepSvc, which registers HepRep fillers in a global registry and allows the
HepRep to be exported to XML, and CorbaSvc, which allows the HepRep to be
published through a CORBA interface and which allows the client application to
feed commands back to GAUDI (such as start next event, or run some GAUDI
algorithm). GLAST's HepRep solution gives users a choice of client
applications, WIRED (written in Java) or FRED (written in C++ and Ruby), and
leaves them free to move to any future HepRep-compliant event display.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 9 pages pdf, 15 figures. PSN THLT00
Search for Free Fractional Electric Charge Elementary Particles
We have carried out a direct search in bulk matter for free fractional
electric charge elementary particles using the largest mass single sample ever
studied - about 17.4 mg of silicone oil. The search used an improved and highly
automated Millikan oil drop technique. No evidence for fractional charge
particles was found. The concentration of particles with fractional charge more
than 0.16e (e being the magnitude of the electron charge) from the nearest
integer charge is less than particles per nucleon with 95%
confidence.Comment: 10 pages,LaTeX, 4 PS figures, submitted to PR
To what extent is Gluon Confinement an empirical fact?
Experimental verifications of Confinement in hadron physics have established
the absence of charges with a fraction of the electron's charge by studying the
energy deposited in ionization tracks at high energies, and performing Millikan
experiments with charged droplets at rest. These experiments test only the
absence of particles with fractional charge in the asymptotic spectrum, and
thus "Quark" Confinement. However what theory suggests is that Color is
confined, that is, all asymptotic particles are color singlets. Since QCD is a
non-Abelian theory, the gluon force carriers (indirectly revealed in hadron
jets) are colored. We empirically examine what can be said about Gluon
Confinement based on the lack of detection of appropriate events, aiming at an
upper bound for high-energy free-gluon production.Comment: 14 pages, 12 figures, version accepted at Few Body Physic
Mathematics Calculus BC
This book gives you the tools to prepare effectively for the Advanced Placement Examination in Mathematics: Calculus BC. These tools include a concise topical review and six full-length practice tests. Our review succinctly covers areas considered most relevant to this exam. Following each of our tests is an answer key complete with detailed explanations designed to clarify the material for you.https://scholarship.richmond.edu/bookshelf/1135/thumbnail.jp
A New Method for Searching for Free Fractional Charge Particles in Bulk Matter
We present a new experimental method for searching for free fractional charge
in bulk matter; this new method derives from the traditional Millikan liquid
drop method, but allows the use of much larger drops, 20 to 100 mm in diameter,
compared to the traditional method that uses drops less than 15 mm in diameter.
These larger drops provide the substantial advantage that it is then much
easier to consistently generate drops containing liquid suspensions of powdered
meteorites and other special minerals. These materials are of great importance
in bulk searches for fractional charge particles that may have been produced in
the early universe.Comment: 17 pages, 5 figures in a singl PDF file (created from WORD Doc.).
Submitted to Review of Scientific Instrument
- …