4,557 research outputs found

    The Use of HepRep in GLAST

    Full text link
    HepRep is a generic, hierarchical format for description of graphics representables that can be augmented by physics information and relational properties. It was developed for high energy physics event display applications and is especially suited to client/server or component frameworks. The GLAST experiment, an international effort led by NASA for a gamma-ray telescope to launch in 2006, chose HepRep to provide a flexible, extensible and maintainable framework for their event display without tying their users to any one graphics application. To support HepRep in their GUADI infrastructure, GLAST developed a HepRep filler and builder architecture. The architecture hides the details of XML and CORBA in a set of base and helper classes allowing physics experts to focus on what data they want to represent. GLAST has two GAUDI services: HepRepSvc, which registers HepRep fillers in a global registry and allows the HepRep to be exported to XML, and CorbaSvc, which allows the HepRep to be published through a CORBA interface and which allows the client application to feed commands back to GAUDI (such as start next event, or run some GAUDI algorithm). GLAST's HepRep solution gives users a choice of client applications, WIRED (written in Java) or FRED (written in C++ and Ruby), and leaves them free to move to any future HepRep-compliant event display.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 9 pages pdf, 15 figures. PSN THLT00

    Therapeutic Use of Certain Defects of the Usual Prison

    Get PDF

    The Use of Copyright Law to Block the Importation of Gray-Market Goods: The Black and White of It All

    Get PDF

    Search for Free Fractional Electric Charge Elementary Particles

    Get PDF
    We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied - about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71×10224.71\times10^{-22} particles per nucleon with 95% confidence.Comment: 10 pages,LaTeX, 4 PS figures, submitted to PR

    To what extent is Gluon Confinement an empirical fact?

    Get PDF
    Experimental verifications of Confinement in hadron physics have established the absence of charges with a fraction of the electron's charge by studying the energy deposited in ionization tracks at high energies, and performing Millikan experiments with charged droplets at rest. These experiments test only the absence of particles with fractional charge in the asymptotic spectrum, and thus "Quark" Confinement. However what theory suggests is that Color is confined, that is, all asymptotic particles are color singlets. Since QCD is a non-Abelian theory, the gluon force carriers (indirectly revealed in hadron jets) are colored. We empirically examine what can be said about Gluon Confinement based on the lack of detection of appropriate events, aiming at an upper bound for high-energy free-gluon production.Comment: 14 pages, 12 figures, version accepted at Few Body Physic

    Mathematics Calculus BC

    Get PDF
    This book gives you the tools to prepare effectively for the Advanced Placement Examination in Mathematics: Calculus BC. These tools include a concise topical review and six full-length practice tests. Our review succinctly covers areas considered most relevant to this exam. Following each of our tests is an answer key complete with detailed explanations designed to clarify the material for you.https://scholarship.richmond.edu/bookshelf/1135/thumbnail.jp

    A New Method for Searching for Free Fractional Charge Particles in Bulk Matter

    Get PDF
    We present a new experimental method for searching for free fractional charge in bulk matter; this new method derives from the traditional Millikan liquid drop method, but allows the use of much larger drops, 20 to 100 mm in diameter, compared to the traditional method that uses drops less than 15 mm in diameter. These larger drops provide the substantial advantage that it is then much easier to consistently generate drops containing liquid suspensions of powdered meteorites and other special minerals. These materials are of great importance in bulk searches for fractional charge particles that may have been produced in the early universe.Comment: 17 pages, 5 figures in a singl PDF file (created from WORD Doc.). Submitted to Review of Scientific Instrument
    corecore