9 research outputs found

    Impact of land-use changes on soil properties and carbon pools in India: A meta-analysis

    Get PDF
    Not AvailableLand-use changes (LUC), primarily due to deforestation and soil disturbance, are one of the major causes of soil quality degradation and greenhouse gas emissions. Effects of LUC on soil physicochemical properties and changes in soil quality and land use management strategies that can effectively restore soil carbon and microbial biomass levels have been reported from all over the world, but the impact analysis of such practices in the Indian context is limited. In this study, over 1,786 paired datasets (for meta-analysis) on land uses (LUs) were collected from Indian literature (1990–2019) to determine the magnitude of the influence of LUC on soil carbon, microbial biomass, and other physical and chemical properties at three soil depths. Meta-analysis results showed that grasslands (36.1%) lost the most soil organic carbon (SOC) compared to native forest lands, followed by plantation lands (35.5%), cultivated lands (31.1%), barren lands (27.3%), and horticulture lands (11.5%). Our findings also revealed that, when compared to forest land, the microbial quotient was lower in other LUs. Due to the depletion of SOC stock, carbon dioxide equivalent (CO2 eq) emissions were significantly higher in all LUs than in forest land. Results also showed that due to the conversion of forest land to cultivated land, total carbon, labile carbon, non-labile carbon, microbial biomass carbon, and SOC stocks were lost by 21%, 25%, 32%, 26%, and 41.2%, respectively. Changes in soil carbon pools and properties were more pronounced in surface (0–15 cm) soils than in subsurface soils (15–30 cm and 30–45 cm). Restoration of the SOC stocks from different LUs ranged from a minimum of 2% (grasslands) to a maximum of 48% (plantation lands). Overall, this study showed that soil carbon pools decreased as LUC transitioned from native forestland to other LUs, and it is suggested that adopting crop-production systems that can reduce CO2 emissions from the intensive LUs such as the ones evaluated here could contribute to improvements in soil quality and mitigation of climate change impacts, particularly under Indian agro-climatic conditions.Not Availabl

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Not Available

    No full text
    Not AvailableGrassland is a highly dynamic land use system and it provides vital ecosystem services, mainly consisting of carbon storage in the tropics and subtropics. The objective of this study was to delineate grassland in India according to soil characteristics and carbon pools in comparison to native forestland, and to discuss management strategies for improving soil carbon (SC) storage in grassland. A total of 675 paired datasets from studies on grassland and forestland in India generated during the period of 1990–2019 were used for meta-analysis study. The analysis shows that soil pH and bulk density (BD) in grasslands were greater by 1.1% and 1.0% compared to forestland while soil organic carbon (SOC) declined by 36.3% (p < 0.05). Among carbon pools, labile carbon (LC), non-labile carbon (NLC), and microbial biomass carbon (MBC) were 35.5%, 35.3% and 29.5% lower, respectively, in the grassland compared to the forestland. Total carbon (TC) was 35.0% lower in the grassland than the forestland (p < 0.05). Soil carbon stocks (SCS) were 32.8% lower in the grassland compared to the forestland. In the grassland, MBC/SOC (%) from the surface layer and subsurface layer were lower by 2.4% and 8.5%, respectively compared to forestland. The percentage effect size was found to have decreased from surface soil to subsurface soil. Relative SCS loss and carbon dioxide equivalent emission from the grassland compared to forestland were 15.2% and 33.3 Mg ha−1, respectively (p < 0.05). Proper management strategies like agroforestry, legume introduction, silvipastoral system, fertilization, irrigation, and quality grass species could improve SC storage and reduce SCS loss in grassland. Overall, this study gives an idea that conversion of native forestland into grassland in India has declined the SC content and hence it is necessary to adapt proper strategies to manage the soil-atmosphere carbon balance.Not Availabl

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl
    corecore