1,122 research outputs found
Large Non-perturbative Effects of Small \Delta m^2_{21}/\Delta m^2_{31} and \sin \theta_{13} on Neutrino Oscillation and CP Violation in Matter
In the framework of three generations, we consider the CP violation in
neutrino oscillation with matter effects. At first, we show that the
non-perturbative effects of two small parameters, \Delta m_{21}^2/\Delta
m_{31}^2 and \sin \theta_{13}, become more than 50% in certain ranges of energy
and baseline length. This means that the non-perturbative effects should be
considered in detailed analysis in the long baseline experiments. Next, we
propose a method to include these effects in approximate formulas for
oscillation probabilities. Assuming the two natural conditions,
\theta_{23}=45^\circ and the fact that the matter density is symmetric, a set
of approximate formulas, which involve the non-perturbative effects, has been
derived in all channels.Comment: 25 pages, 4 figures, version to appear in JHE
Very Long Baseline Neutrino Oscillation Experiment for Precise Measurements of Mixing Parameters and CP Violating Effects
We analyze the prospects of a feasible, Brookhaven National Laboratory based,
very long baseline (BVLB) neutrino oscillation experiment consisting of a
conventional horn produced low energy wide band beam and a detector of 500 kT
fiducial mass with modest requirements on event recognition and resolution.
Such an experiment is intended primarily to determine CP violating effects in
the neutrino sector for 3-generation mixing. We analyze the sensitivity of such
an experiment. We conclude that this experiment will allow determination of the
CP phase and the currently unknown mixing parameter
, if , a value times
lower than the present experimental upper limit. In addition to
and , the experiment has great potential for precise measurements
of most other parameters in the neutrino mixing matrix including , , ,
and the mass ordering of neutrinos through the observation of the matter effect
in the appearance channel.Comment: 12 pages, 10 figure
Tests of the Standard Model Using Muon Polarization Asymmetries in Kaon Decays
We have examined the physics and the experimental feasibility of studying
various kaon decay processes in which the polarization of a muon in the final
state is measured. Valuable information on CP violation, the quark mixing (CKM)
matrix, and new physics can be obtained from such measurements. We have
considered muon polarization in K_L to mu+ mu- and K to pi mu+ mu- decays.
Although the effects are small, or difficult to measure because of the small
branching ratios involved, these studies could provide clean measurements of
the CKM parameters. The experimental difficulty appears comparable to the
observation of K to pi nu barnu. New sources of physics, involving non-standard
CP violation, could produce effects observable in these measurements. Limits
from new results on the neutron and electron electric dipole moment, and
epsilon-prime over epsilon in neutral kaon decays, do not eliminate certain
models that could contribute to the signal. A detailed examination of muon
polarization out of the decay plane in KMU3 and radiative KMU2 decays also
appears to be of interest. With current kaon beams and detector techniques, it
is possible to measure the T-violating polarization for KMU3 with uncertainties
approaching 0.0001. This level of sensitivity would provide an interesting
probe of new physics.Comment: 24 pages, 3 figures, To be published in the International Journal of
Modern Physics
T-odd correlations in charged Kl4 decays
We analyse the sensitivity to physics beyond the SM of T-odd correlations in
decays, which do not involve the lepton polarization. We show that
a combined analysis of and decays can lead to new
constraints about CP violation in charged-current interactions,
complementary to those obtained from the transverse muon polarization in
and of comparable accuracy.Comment: 6 pages (LaTeX
Experiment Simulation Configurations Used in DUNE CDR
The LBNF/DUNE CDR describes the proposed physics program and experimental
design at the conceptual design phase. Volume 2, entitled The Physics Program
for DUNE at LBNF, outlines the scientific objectives and describes the physics
studies that the DUNE collaboration will perform to address these objectives.
The long-baseline physics sensitivity calculations presented in the DUNE CDR
rely upon simulation of the neutrino beam line, simulation of neutrino
interactions in the far detector, and a parameterized analysis of detector
performance and systematic uncertainty. The purpose of this posting is to
provide the results of these simulations to the community to facilitate
phenomenological studies of long-baseline oscillation at LBNF/DUNE.
Additionally, this posting includes GDML of the DUNE single-phase far detector
for use in simulations. DUNE welcomes those interested in performing this work
as members of the collaboration, but also recognizes the benefit of making
these configurations readily available to the wider community.Comment: 9 pages, 4 figures, configurations in ancillary file
Search for the Weak Decay of an H Dibaryon
We have searched for a neutral dibaryon decaying via and
. Our search has yielded two candidate events from which we set
an upper limit on the production cross section. Normalizing to the
inclusive production cross section, we find at 90% C.L., for an of mass
2.15 GeV/.Comment: 11 pages, 6 postscript figures, epsfig, aps, preprint, revte
Potential of optimized NOvA for large theta(13) & combined performance with a LArTPC & T2K
NOvA experiment has reoptimized its event selection criteria in light of the
recently measured moderately large value of theta(13). We study the improvement
in the sensitivity to the neutrino mass hierarchy and to leptonic CP violation
due to these new features. For favourable values of deltacp, NOvA sensitivity
to mass hierarchy and leptonic CP violation is increased by 20%. Addition of 5
years of neutrino data from T2K to NOvA more than doubles the range of deltacp
for which the leptonic CP violation can be discovered, compared to stand alone
NOvA. But for unfavourable values of deltacp, the combination of NOvA and T2K
are not enough to provide even a 90% C.L. hint of hierarchy discovery.
Therefore, we further explore the improvement in the hierarchy and CP violation
sensitivities due to the addition of a 10 kt liquid argon detector placed close
to NOvA site. The capabilities of such a detector are equivalent to those of
NOvA in all respects. We find that combined data from 10 kt liquid argon
detector (3 years of nu + 3 years of nubar run), NOvA (6 years of nu + 6 years
of nubar run) and T2K (5 years of nu run) can give a close to 2 sigma hint of
hierarchy discovery for all values of deltacp. With this combined data, we can
achieve CP violation discovery at 95% C.L. for roughly 60% values of deltacp.Comment: 22 pages, 24 pdf figures, 5 tables. In the appendix, new results are
presented with conservative choices of central values of oscillation
parameters. New references are added. Accepted in JHE
- …