3 research outputs found

    CoWBP capping barrier layer for sub 90 nm Cu interconnects

    Get PDF
    Abstract Electroless cobalt films have been obtained by deposition using a plating bath containing two reducing agents: dimethylamineborane (DMAB) and sodium hypophosphite. This formulation allows spontaneous activation on copper followed by auto catalytic electroless plating. CoWBP and CoBP films are proposed as diffusion barriers and encapsulation layers, for copper lines and via contacts for ULSI interconnect applications. The crystalline structure, chemical composition and oxidation states of the elements were studied, as well as the electrical resistivity, topography and morphology of the films. The film composition was characterized as a function of the solution composition; the barrier properties of the films were tested and an oxidation resistance study was conducted. The films were characterized and the results show that they can be applied as capping layers for ULSI copper metallization

    The application of a real-time rapid-prototyping environment for the behavioral rehabilitation of a lost function in rats

    Get PDF
    Abstract-In this paper we propose a Rapid Prototyping Environment (RPE) for real-time biosignal analysis including ECG, EEG, ECoG and EMG of humans and animals requiring a very precise time resolution. Based on the previous RPE which was mainly designed for developing Brain Computer Interfaces (BCI), the present solution offers tools for data preprocessing, analysis and visualization even in the case of high sampling rates and furthermore tools for precise cognitive stimulation. One application of the system, the analysis of multi-unit activity measured from the brain of a rat is presented to prove the efficiency of the proposed environment. The experimental setup was used to design and implement a biomimetic, biohybrid model for demonstrating the recovery of a learning function lost with age. Throughout the paper we discuss the components of the setup, the software structure and the online visualization. At the end we present results of a real-time experiment in which the model of the brain learned to react to the acquired signals

    A surface adsorption model for electroless cobalt alloy thin films

    Get PDF
    Thin cobalt alloy films have been obtained using electroless deposition solution with two reducing agents: dimethylamine borane (DMAB) and sodium hypophosphite. This system allows spontaneous and self-activated deposition of barrier layers on Cu lines and via contacts for ultra large scale integration (ULSI) interconnects applications. This work presents a study of the solution composition effects on the material properties and composition of the films. First, we present the deposition rates, the electrical resistance, the various element profiles in the thin film, and the thin film roughness. Next, we discuss the film ’ s composition and its dependence on the ratio between the reducing agents composition in the solution. The experimental results suggest that the film phosphorous and boron composition is determined by the surface adsorption rates of the reducing agents. Therefore, a surface co-adsorption model of the two reducing agents is proposed, formulated, analyzed, and compared to the experimental results. Finally, we discuss the model and its significance to the formation of high-quality ultra-thin barrier layers
    corecore