1,242 research outputs found
Bohmian mechanics in relativistic quantum mechanics, quantum field theory and string theory
I present a short overview of my recent achievements on the Bohmian
interpretation of relativistic quantum mechanics, quantum field theory and
string theory. This includes the relativistic-covariant Bohmian equations for
particle trajectories, the problem of particle creation and destruction, the
Bohmian interpretation of fermionic fields and the intrinsically Bohmian
quantization of fields and strings based on the De Donder-Weyl covariant
canonical formalism.Comment: 6 pages, talk given at Third International Workshop DICE2006,
Piombino, Italy, September 11-15, 200
Recommended from our members
Modelling and optimisation of design of non-conventional instrument transformers
In this paper, we have proposed, modelled and optimised several designs of non-conventional instrument transformer (NCIT) for high voltage overhead transmission lines (400kV). We have discussed several parameters and investigated how they influence the sensitivity of our NCIT, consisting of magnetic shape memory (MSM) element, magnetic circuit and an LVDT (linear variable differential transformer). One of the most used conductors in these lines, 528-Al1/69-ST1A ACSR conductor (old code MOOSE), was modelled together with the MSM element and the magnetic circuit in ANSYS APDL. Based on the obtained results we have given suggestions on how NCIT could be designed taking into account a choice of the most appropriate material for this application. The way how the model was developed was presented as well as calculations of errors in the model in ANSYS APDL for electromagnetic problems
Boson-fermion unification, superstrings, and Bohmian mechanics
Bosonic and fermionic particle currents can be introduced in a more unified
way, with the cost of introducing a preferred spacetime foliation. Such a
unified treatment of bosons and fermions naturally emerges from an analogous
superstring current, showing that the preferred spacetime foliation appears
only at the level of effective field theory, not at the fundamental superstring
level. The existence of the preferred spacetime foliation allows an objective
definition of particles associated with quantum field theory in curved
spacetime. Such an objective definition of particles makes the Bohmian
interpretation of particle quantum mechanics more appealing. The superstring
current allows a consistent Bohmian interpretation of superstrings themselves,
including a Bohmian description of string creation and destruction in terms of
string splitting. The Bohmian equations of motion and the corresponding
probabilistic predictions are fully relativistic covariant and do not depend on
the preferred foliation.Comment: 30 pages, 1 figure, revised, to appear in Found. Phy
Quantum mechanics: Myths and facts
A common understanding of quantum mechanics (QM) among students and practical
users is often plagued by a number of "myths", that is, widely accepted claims
on which there is not really a general consensus among experts in foundations
of QM. These myths include wave-particle duality, time-energy uncertainty
relation, fundamental randomness, the absence of measurement-independent
reality, locality of QM, nonlocality of QM, the existence of well-defined
relativistic QM, the claims that quantum field theory (QFT) solves the problems
of relativistic QM or that QFT is a theory of particles, as well as myths on
black-hole entropy. The fact is that the existence of various theoretical and
interpretational ambiguities underlying these myths does not yet allow us to
accept them as proven facts. I review the main arguments and counterarguments
lying behind these myths and conclude that QM is still a
not-yet-completely-understood theory open to further fundamental research.Comment: 51 pages, pedagogic review, revised, new references, to appear in
Found. Phy
Comment on "Classical interventions in quantum systems II. Relativistic invariance"
In a recent paper [Phys. Rev. A 61, 022117 (2000)], quant-ph/9906034, A.
Peres argued that quantum mechanics is consistent with special relativity by
proposing that the operators that describe time evolution do not need to
transform covariantly, although the measurable quantities need to transform
covariantly. We discuss the weaknesses of this proposal.Comment: 4 pages, to appear in Phys. Rev.
Shot Noise of Spin-Decohering Transport in Spin-Orbit Coupled Nanostructures
We generalize the scattering theory of quantum shot noise to include the full
spin-density matrix of electrons injected from a spin-filtering or
ferromagnetic electrode into a quantum-coherent nanostructure governed by
various spin-dependent interactions. This formalism yields the spin-resolved
shot noise power for different experimental measurement setups--with
ferromagnetic source and ferromagnetic or normal drain electrodes--whose
evaluation for the diffusive multichannel quantum wires with the Rashba (SO)
spin-orbit coupling shows how spin decoherence and dephasing lead to
substantial enhancement of charge current fluctuations (characterized by Fano
factors ). However, these processes and the corresponding shot noise
increase are suppressed in narrow wires, so that charge transport experiments
measuring the Fano factor in a
ferromagnet/SO-coupled-wire/paramagnet setup also quantify the degree of
phase-coherence of transported spin--we predict a one-to-one correspondence
between the magnitude of the spin polarization vector and .Comment: 8 pages, 3 figure; enhanced with 2 new figure
The influence of the polarizability in some bremsstrahlung processes
We consider the general results of the theory of the polarizational bremsstrahlung (BrS) and we present the results of recent calculations of the cross sections in the conditions when the radiation of atomic electrons dominates in the total spectrum. For example, we investigated the case when the frequency of the emitted photon is comparable with the energy of the great dipole or plasmon resonance in a cluster (fullerene).Physical chemistry 2004 : 7th international conference on fundamental and applied aspects of physical chemistry; Belgrade (Serbia); 21-23 September 200
- …