21 research outputs found

    The Politics of Hydroelectric Power in Alaska: Rampart and Devil Canyon -- A Case Study

    Get PDF
    Originally published January 1978, revised October 1978. OWRT Agreement No. 14-34-0001-7003 Project No. A-060-ALAS. Completion Report.Hydroelectric power in Alaska has had a curious history--and an instructive one. This study focuses on three separate projects: Eklutna, Rampart, and Devil Canyon. The Eklutna project functions today; Rampart was not constructed; and the Devil Canyon project is still in the planning stage. Yet for all their differences in location, goals, and fate, the projects were related; and, taken together, their histories highlight all the essential political elements involved in hydroelectric power construction. There is still a fourth project which is functioning today--the Snettisham installation near Juneau which is not considered in this paper. A complex decision-making process determines the progress of such large projects. In following these three Alaskan projects, we can gain a better perspective on the roles of the several government agencies and the public; thus we can assess some of the inherent complexities. Such an assessment fully substantiates the conclusion that it takes more than moving dirt to build a dam.The work upon which this completion report is based was supported by funds provided by the U. S. Department of the Interior, Office of Water Research and Technology as authorized under the Water Resources Research Act of 1964, Public Law 88-379, as amended

    Zerebralsch�digung im Gefolge vaginal-operativer Geburtsbeendigung

    No full text

    Phase Behavior and Fuel Properties of Bio-Oil/Glycerol/Methanol Blends

    No full text
    This study investigates the phase behavior and fuel properties of a series of bio-oil/glycerol/methanol blends. The results show that even though glycerol has a poor solubility in bio-oil, homogeneous bio-oil/glycerol/methanol fuel blends can be prepared with appropriate amount of methanol addition. Compared to the bio-oil or glycerol alone as a fuel, the bio-oil/glycerol/methanol blends have improved fuel properties (higher heating value, lower viscosity, and lower surface tension, etc.). Taking into safety consideration during storage and transportation of a fuel and the possible ratio of glycerol to methanol that may be obtained from biodiesel production process, potential feasible compositions of the bio-oil/glycerol/methanol blends (bio-oil ≥ 70 wt %; glycerol ≤ 20 wt %; methanol ≤ 10 wt %) are recommended as burner fuel for combustion applications. Further accelerated aging experiments of selected fuel blends in the recommended composition range indicate that the fuel blends experience decreases in the viscosity and total acid number and an increase in water content of the fuel blends upon long-term storage
    corecore