2,915 research outputs found
Sampling and Representation Complexity of Revenue Maximization
We consider (approximate) revenue maximization in auctions where the
distribution on input valuations is given via "black box" access to samples
from the distribution. We observe that the number of samples required -- the
sample complexity -- is tightly related to the representation complexity of an
approximately revenue-maximizing auction. Our main results are upper bounds and
an exponential lower bound on these complexities
Auctions with Heterogeneous Items and Budget Limits
We study individual rational, Pareto optimal, and incentive compatible
mechanisms for auctions with heterogeneous items and budget limits. For
multi-dimensional valuations we show that there can be no deterministic
mechanism with these properties for divisible items. We use this to show that
there can also be no randomized mechanism that achieves this for either
divisible or indivisible items. For single-dimensional valuations we show that
there can be no deterministic mechanism with these properties for indivisible
items, but that there is a randomized mechanism that achieves this for either
divisible or indivisible items. The impossibility results hold for public
budgets, while the mechanism allows private budgets, which is in both cases the
harder variant to show. While all positive results are polynomial-time
algorithms, all negative results hold independent of complexity considerations
Vickrey Auctions for Irregular Distributions
The classic result of Bulow and Klemperer \cite{BK96} says that in a
single-item auction recruiting one more bidder and running the Vickrey auction
achieves a higher revenue than the optimal auction's revenue on the original
set of bidders, when values are drawn i.i.d. from a regular distribution. We
give a version of Bulow and Klemperer's result in settings where bidders'
values are drawn from non-i.i.d. irregular distributions. We do this by
modeling irregular distributions as some convex combination of regular
distributions. The regular distributions that constitute the irregular
distribution correspond to different population groups in the bidder
population. Drawing a bidder from this collection of population groups is
equivalent to drawing from some convex combination of these regular
distributions. We show that recruiting one extra bidder from each underlying
population group and running the Vickrey auction gives at least half of the
optimal auction's revenue on the original set of bidders
Constant Rank Bimatrix Games are PPAD-hard
The rank of a bimatrix game (A,B) is defined as rank(A+B). Computing a Nash
equilibrium (NE) of a rank-, i.e., zero-sum game is equivalent to linear
programming (von Neumann'28, Dantzig'51). In 2005, Kannan and Theobald gave an
FPTAS for constant rank games, and asked if there exists a polynomial time
algorithm to compute an exact NE. Adsul et al. (2011) answered this question
affirmatively for rank- games, leaving rank-2 and beyond unresolved.
In this paper we show that NE computation in games with rank , is
PPAD-hard, settling a decade long open problem. Interestingly, this is the
first instance that a problem with an FPTAS turns out to be PPAD-hard. Our
reduction bypasses graphical games and game gadgets, and provides a simpler
proof of PPAD-hardness for NE computation in bimatrix games. In addition, we
get:
* An equivalence between 2D-Linear-FIXP and PPAD, improving a result by
Etessami and Yannakakis (2007) on equivalence between Linear-FIXP and PPAD.
* NE computation in a bimatrix game with convex set of Nash equilibria is as
hard as solving a simple stochastic game.
* Computing a symmetric NE of a symmetric bimatrix game with rank is
PPAD-hard.
* Computing a (1/poly(n))-approximate fixed-point of a (Linear-FIXP)
piecewise-linear function is PPAD-hard.
The status of rank- games remains unresolved
Coverage, Matching, and Beyond: New Results on Budgeted Mechanism Design
We study a type of reverse (procurement) auction problems in the presence of
budget constraints. The general algorithmic problem is to purchase a set of
resources, which come at a cost, so as not to exceed a given budget and at the
same time maximize a given valuation function. This framework captures the
budgeted version of several well known optimization problems, and when the
resources are owned by strategic agents the goal is to design truthful and
budget feasible mechanisms, i.e. elicit the true cost of the resources and
ensure the payments of the mechanism do not exceed the budget. Budget
feasibility introduces more challenges in mechanism design, and we study
instantiations of this problem for certain classes of submodular and XOS
valuation functions. We first obtain mechanisms with an improved approximation
ratio for weighted coverage valuations, a special class of submodular functions
that has already attracted attention in previous works. We then provide a
general scheme for designing randomized and deterministic polynomial time
mechanisms for a class of XOS problems. This class contains problems whose
feasible set forms an independence system (a more general structure than
matroids), and some representative problems include, among others, finding
maximum weighted matchings, maximum weighted matroid members, and maximum
weighted 3D-matchings. For most of these problems, only randomized mechanisms
with very high approximation ratios were known prior to our results
Budget Feasible Mechanisms for Experimental Design
In the classical experimental design setting, an experimenter E has access to
a population of potential experiment subjects , each
associated with a vector of features . Conducting an experiment
with subject reveals an unknown value to E. E typically assumes
some hypothetical relationship between 's and 's, e.g., , and estimates from experiments, e.g., through linear
regression. As a proxy for various practical constraints, E may select only a
subset of subjects on which to conduct the experiment.
We initiate the study of budgeted mechanisms for experimental design. In this
setting, E has a budget . Each subject declares an associated cost to be part of the experiment, and must be paid at least her cost. In
particular, the Experimental Design Problem (EDP) is to find a set of
subjects for the experiment that maximizes V(S) = \log\det(I_d+\sum_{i\in
S}x_i\T{x_i}) under the constraint ; our objective
function corresponds to the information gain in parameter that is
learned through linear regression methods, and is related to the so-called
-optimality criterion. Further, the subjects are strategic and may lie about
their costs.
We present a deterministic, polynomial time, budget feasible mechanism
scheme, that is approximately truthful and yields a constant factor
approximation to EDP. In particular, for any small and , we can construct a (12.98, )-approximate mechanism that is
-truthful and runs in polynomial time in both and
. We also establish that no truthful,
budget-feasible algorithms is possible within a factor 2 approximation, and
show how to generalize our approach to a wide class of learning problems,
beyond linear regression
Social Dilemmas and Cooperation in Complex Networks
In this paper we extend the investigation of cooperation in some classical
evolutionary games on populations were the network of interactions among
individuals is of the scale-free type. We show that the update rule, the payoff
computation and, to some extent the timing of the operations, have a marked
influence on the transient dynamics and on the amount of cooperation that can
be established at equilibrium. We also study the dynamical behavior of the
populations and their evolutionary stability.Comment: 12 pages, 7 figures. to appea
Randomized Revenue Monotone Mechanisms for Online Advertising
Online advertising is the main source of revenue for many Internet firms. A
central component of online advertising is the underlying mechanism that
selects and prices the winning ads for a given ad slot. In this paper we study
designing a mechanism for the Combinatorial Auction with Identical Items (CAII)
in which we are interested in selling identical items to a group of bidders
each demanding a certain number of items between and . CAII generalizes
important online advertising scenarios such as image-text and video-pod
auctions [GK14]. In image-text auction we want to fill an advertising slot on a
publisher's web page with either text-ads or a single image-ad and in
video-pod auction we want to fill an advertising break of seconds with
video-ads of possibly different durations.
Our goal is to design truthful mechanisms that satisfy Revenue Monotonicity
(RM). RM is a natural constraint which states that the revenue of a mechanism
should not decrease if the number of participants increases or if a participant
increases her bid.
[GK14] showed that no deterministic RM mechanism can attain PoRM of less than
for CAII, i.e., no deterministic mechanism can attain more than
fraction of the maximum social welfare. [GK14] also design a
mechanism with PoRM of for CAII.
In this paper, we seek to overcome the impossibility result of [GK14] for
deterministic mechanisms by using the power of randomization. We show that by
using randomization, one can attain a constant PoRM. In particular, we design a
randomized RM mechanism with PoRM of for CAII
Efficiency Guarantees in Auctions with Budgets
In settings where players have a limited access to liquidity, represented in
the form of budget constraints, efficiency maximization has proven to be a
challenging goal. In particular, the social welfare cannot be approximated by a
better factor then the number of players. Therefore, the literature has mainly
resorted to Pareto-efficiency as a way to achieve efficiency in such settings.
While successful in some important scenarios, in many settings it is known that
either exactly one incentive-compatible auction that always outputs a
Pareto-efficient solution, or that no truthful mechanism can always guarantee a
Pareto-efficient outcome. Traditionally, impossibility results can be avoided
by considering approximations. However, Pareto-efficiency is a binary property
(is either satisfied or not), which does not allow for approximations.
In this paper we propose a new notion of efficiency, called \emph{liquid
welfare}. This is the maximum amount of revenue an omniscient seller would be
able to extract from a certain instance. We explain the intuition behind this
objective function and show that it can be 2-approximated by two different
auctions. Moreover, we show that no truthful algorithm can guarantee an
approximation factor better than 4/3 with respect to the liquid welfare, and
provide a truthful auction that attains this bound in a special case.
Importantly, the liquid welfare benchmark also overcomes impossibilities for
some settings. While it is impossible to design Pareto-efficient auctions for
multi-unit auctions where players have decreasing marginal values, we give a
deterministic -approximation for the liquid welfare in this setting
Emergence of a measurement basis in atom-photon scattering
The process of quantum measurement has been a long standing source of debate.
A measurement is postulated to collapse a wavefunction onto one of the states
of a predetermined set - the measurement basis. This basis origin is not
specified within quantum mechanics. According to the theory of decohernce, a
measurement basis is singled out by the nature of coupling of a quantum system
to its environment. Here we show how a measurement basis emerges in the
evolution of the electronic spin of a single trapped atomic ion due to
spontaneous photon scattering. Using quantum process tomography we visualize
the projection of all spin directions, onto this basis, as a photon is
scattered. These basis spin states are found to be aligned with the scattered
photon propagation direction. In accordance with decohernce theory, they are
subjected to a minimal increase in entropy due to the photon scattering, while,
orthogonal states become fully mixed and their entropy is maximally increased.
Moreover, we show that detection of the scattered photon polarization measures
the spin state of the ion, in the emerging basis, with high fidelity. Lastly,
we show that while photon scattering entangles all superpositions of pointer
states with the scattered photon polarization, the measurement-basis states
themselves remain classically correlated with it. Our findings show that photon
scattering by atomic spin superpositions fulfils all the requirements from a
quantum measurement process
- …