578 research outputs found
Developing an Explicit Instruction Special Education Teacher Observation Rubric
In this study, we developed an Explicit Instruction special education teacher observation rubric that details the elements of explicit instruction, and tested its psychometric properties using many-faceted Rasch measurement (MFRM). Video observations of classroom instruction from 30 special education teachers across three states were collected. External raters (n = 15) were trained to observe and evaluate instruction using the rubric, and assigned scores of ‘implemented’, ‘partially implemented’ or ‘not implemented’ for each of the items. Analyses showed that the item, teacher, lesson and rater facets achieved high psychometric quality for the instrument. Implications for research and practice are discussed
Evidence of a deep viral host switch event with beak and feather disease virus infection in rainbow bee-eaters (Merops ornatus)
Since the characterization of psittacine beak and feather disease (PBFD) in 1984, a wide range of avian circoviruses have been discovered with varying pathogenic effects amongst a diverse range of avian hosts. Until recently these circovirus species were thought to be restricted to within avian Orders such as the Psittaciformes for beak and feather disease virus (BFDV) and Columbiformes for pigeon circovirus with little evidence of cross-family transmission or replication. We report evidence of a naturally occurring novel host switch event with self-limiting BFDV infection in a group of rainbow bee-eaters (Merops ornatus) a species of Coraciiformes unrelated to parrots and not previously known to be susceptible to any avian circovirus. The outbreak highlights important and unexpected aspects of disease emergence and host-switching pertinent to other situations when viruses might cross species boundaries as well as the potential of avian circoviruses to infect disparate host species
Stage managing bipolar disorder.
OBJECTIVES: Clinical staging is widespread in medicine - it informs prognosis, clinical course, and treatment, and assists individualized care. Staging places an individual on a probabilistic continuum of increasing potential disease severity, ranging from clinically at-risk or latency stage through first threshold episode of illness or recurrence, and, finally, to late or end-stage disease. The aim of the present paper was to examine and update the evidence regarding staging in bipolar disorder, and how this might inform targeted and individualized intervention approaches.
METHODS: We provide a narrative review of the relevant information.
RESULTS: In bipolar disorder, the validity of staging is informed by a range of findings that accompany illness progression, including neuroimaging data suggesting incremental volume loss, cognitive changes, and a declining likelihood of response to pharmacological and psychosocial treatments. Staging informs the adoption of a number of approaches, including the active promotion of both indicated prevention for at-risk individuals and early intervention strategies for newly diagnosed individuals, and the tailored implementation of treatments according to the stage of illness.
CONCLUSIONS: The nature of bipolar disorder implies the presence of an active process of neuroprogression that is considered to be at least partly mediated by inflammation, oxidative stress, apoptosis, and changes in neurogenesis. It further supports the concept of neuroprotection, in that a diversity of agents have putative effects against these molecular targets. Clinically, staging suggests that the at-risk state or first episode is a period that requires particularly active and broad-based treatment, consistent with the hope that the temporal trajectory of the illness can be altered. Prompt treatment may be potentially neuroprotective and attenuate the neurostructural and neurocognitive changes that emerge with chronicity. Staging highlights the need for interventions at a service delivery level and implementing treatments at the earliest stage of illness possible
Numerical Construction of LISS Lyapunov Functions under a Small Gain Condition
In the stability analysis of large-scale interconnected systems it is
frequently desirable to be able to determine a decay point of the gain
operator, i.e., a point whose image under the monotone operator is strictly
smaller than the point itself. The set of such decay points plays a crucial
role in checking, in a semi-global fashion, the local input-to-state stability
of an interconnected system and in the numerical construction of a LISS
Lyapunov function. We provide a homotopy algorithm that computes a decay point
of a monotone op- erator. For this purpose we use a fixed point algorithm and
provide a function whose fixed points correspond to decay points of the
monotone operator. The advantage to an earlier algorithm is demonstrated.
Furthermore an example is given which shows how to analyze a given perturbed
interconnected system.Comment: 30 pages, 7 figures, 4 table
Diaphragm Abnormalities in Patients with End-Stage Heart Failure: NADPH Oxidase Upregulation and Protein Oxidation
Patients with heart failure (HF) have diaphragm abnormalities that contribute to disease morbidity and mortality. Studies in animals suggest that reactive oxygen species (ROS) cause diaphragm abnormalities in HF. However, the effects of HF on ROS sources, antioxidant enzymes, and protein oxidation in the diaphragm of humans is unknown. NAD(P)H oxidase, especially the Nox2 isoform, is an important source of ROS in the diaphragm. Our main hypothesis was that diaphragm from patients with HF have heightened Nox2 expression and p47phox phosphorylation (marker of enzyme activation) that is associated with elevated protein oxidation. We collected diaphragm biopsies from patients with HF and brain-dead organ donors (controls). Diaphragm mRNA levels of Nox2 subunits were increased 2.5–4.6-fold over controls (p \u3c 0.05). Patients also had increased protein levels of Nox2 subunits (p47phox, p22phox, and p67phox) and total p47phox phosphorylation, while phospho-to-total p47phox levels were unchanged. The antioxidant enzyme catalase was increased in patients, whereas glutathione peroxidase and superoxide dismutases were unchanged. Among markers of protein oxidation, carbonyls were increased by ~40% (p \u3c 0.05) and 4-hydroxynonenal and 3-nitrotyrosines were unchanged in patients with HF. Overall, our findings suggest that Nox2 is an important source of ROS in the diaphragm of patients with HF and increases in levels of antioxidant enzymes are not sufficient to maintain normal redox homeostasis. The net outcome is elevated diaphragm protein oxidation that has been shown to cause weakness in animals
Searching for stochastic gravitational-wave background with the co-located LIGO interferometers
This paper presents techniques developed by the LIGO Scientific Collaboration
to search for the stochastic gravitational-wave background using the co-located
pair of LIGO interferometers at Hanford, WA. We use correlations between
interferometers and environment monitoring instruments, as well as time-shifts
between two interferometers (described here for the first time) to identify
correlated noise from non-gravitational sources. We veto particularly noisy
frequency bands and assess the level of residual non-gravitational coupling
that exists in the surviving data.Comment: Proceedings paper from the 7th Edoardo Amaldi Conference on
Gravitational Waves, held in Sydney, Australia from 8-14 July 2007. Accepted
to J. Phys.: Conf. Se
Could Only Fermions Be Elementary?
In standard Poincare and anti de Sitter SO(2,3) invariant theories,
antiparticles are related to negative energy solutions of covariant equations
while independent positive energy unitary irreducible representations (UIRs) of
the symmetry group are used for describing both a particle and its
antiparticle. Such an approach cannot be applied in de Sitter SO(1,4) invariant
theory. We argue that it would be more natural to require that (*) one UIR
should describe a particle and its antiparticle simultaneously. This would
automatically explain the existence of antiparticles and show that a particle
and its antiparticle are different states of the same object. If (*) is adopted
then among the above groups only the SO(1,4) one can be a candidate for
constructing elementary particle theory. It is shown that UIRs of the SO(1,4)
group can be interpreted in the framework of (*) and cannot be interpreted in
the standard way. By quantizing such UIRs and requiring that the energy should
be positive in the Poincare approximation, we conclude that i) elementary
particles can be only fermions. It is also shown that ii) C invariance is not
exact even in the free massive theory and iii) elementary particles cannot be
neutral. This gives a natural explanation of the fact that all observed neutral
states are bosons.Comment: The paper is considerably revised and the following results are
added: in the SO(1,4) invariant theory i) the C invariance is not exact even
for free massive particles; ii) neutral particles cannot be elementar
On the problem of interactions in quantum theory
The structure of representations describing systems of free particles in the
theory with the invariance group SO(1,4) is investigated. The property of the
particles to be free means as usual that the representation describing a
many-particle system is the tensor product of the corresponding single-particle
representations (i.e. no interaction is introduced). It is shown that the mass
operator contains only continuous spectrum in the interval
and such representations are unitarily equivalent to ones describing
interactions (gravitational, electromagnetic etc.). This means that there are
no bound states in the theory and the Hilbert space of the many-particle system
contains a subspace of states with the following property: the action of free
representation operators on these states is manifested in the form of different
interactions. Possible consequences of the results are discussed.Comment: 35 pages, Late
- …