1,292 research outputs found
Microwave and Quantum Magnetics
Contains reports on two research projects.National Institutes of Health (Grant 5 PO1 CA31303
Gap solitons in spatiotemporal photonic crystals
We generalize the concept of nonlinear periodic structures to systems that
show arbitrary spacetime variations of the refractive index. Nonlinear pulse
propagation through these spatiotemporal photonic crystals can be described,
for shallow nonstationary gratings, by coupled mode equations which are a
generalization of the traditional equations used for stationary photonic
crystals. Novel gap soliton solutions are found by solving a modified massive
Thirring model. They represent the missing link between the gap solitons in
static photonic crystals and resonance solitons found in dynamic gratings.Comment: 3 figures, submitte
Biochemical quantification of total brain glycogen concentration in rats under different glycemic states.
All (13)C NMR studies of brain glycogen to date relied on observing the incorporation of (13)C label into glycogen, and thus interpretation was potentially affected by changes in (13)C label turnover rates. The goal of this study was to quantify total brain glycogen concentration under conditions of hypoglycemia or normoglycemia using biochemical methods. Rats were sacrificed using a focused microwave fixation device. The results showed that metabolism of brain glycogen was Glc- and insulin-sensitive and that insulin-induced hypoglycemia promoted a gradual glycogenolysis. Moreover, we show that there are very mild effects of isoflurane and alpha-chloralose anesthesia on brain glycogen concentration. Altogether these results show that total brain glycogen serves as a substantial source of glucosyl units during insulin-induced moderate hypoglycemia and therefore may be neuroprotective. Finally we also conclude that previous interpretation of (13)C NMR spectroscopy data accurately reflected the changes in total brain glycogen content
GALEX Observations of CS and OH Emission in Comet 9P/Tempel 1 During Deep Impact
GALEX observations of comet 9P/Tempel 1 using the near ultraviolet (NUV)
objective grism were made before, during and after the Deep Impact event that
occurred on 2005 July 4 at 05:52:03 UT when a 370 kg NASA spacecraft was
maneuvered into the path of the comet. The NUV channel provides usable spectral
information in a bandpass covering 2000 - 3400 A with a point source spectral
resolving power of approximately 100. The primary spectral features in this
range include solar continuum scattered from cometary dust and emissions from
OH and CS molecular bands centered near 3085 and 2575 A, respectively. In
particular, we report the only cometary CS emission detected during this event.
The observations allow the evolution of these spectral features to be tracked
over the period of the encounter. In general, the NUV emissions observed from
Tempel 1 are much fainter than those that have been observed by GALEX from
other comets. However, it is possible to derive production rates for the parent
molecules of the species detected by GALEX in Tempel 1 and to determine the
number of these molecules liberated by the impact. The derived quiescent
production rates are Q(H2O) = 6.4e27 molecules/s and Q(CS2) = 6.7e24
molecules/s, while the impact produced an additional 1.6e32 H2O molecules and
1.3e29 CS2 molecules, a similar ratio as in quiescent outgassing.Comment: 15 pages, 4 figures, accepted for publication in the Astrophysical
Journa
A comparison of in vivo 13C MR brain glycogen quantification at 9.4 and 14.1 T.
The high molecular weight and low concentration of brain glycogen render its noninvasive quantification challenging. Therefore, the precision increase of the quantification by localized (13) C MR at 9.4 to 14.1 T was investigated. Signal-to-noise ratio increased by 66%, slightly offset by a T(1) increase of 332 ± 15 to 521 ± 34 ms. Isotopic enrichment after long-term (13) C administration was comparable (≈ 40%) as was the nominal linewidth of glycogen C1 (≈ 50 Hz). Among the factors that contributed to the 66% observed increase in signal-to-noise ratio, the T(1) relaxation time impacted the effective signal-to-noise ratio by only 10% at a repetition time = 1 s. The signal-to-noise ratio increase together with the larger spectral dispersion at 14.1 T resulted in a better defined baseline, which allowed for more accurate fitting. Quantified glycogen concentrations were 5.8 ± 0.9 mM at 9.4 T and 6.0 ± 0.4 mM at 14.1 T; the decreased standard deviation demonstrates the compounded effect of increased magnetization and improved baseline on the precision of glycogen quantification
Microwave Devices Employing Magnetic Waves
Contains research objectives and summary of research on two research projects.Joint Services Electronics Program (Contract DAAB07-76-C-1400
Developing a gas rocket performance prediction technique
A simple, semi-empirical performance correlation/prediction technique applicable to gaseous and liquid propellant rocket engines is presented. Excellent correlations were attained for over 100 test firings by adjusting the computation of the gaseous mixing of an unreactive, coaxial jet using a correlation factor, F, which resulted in prediction of the experimental combustion efficiency for each firing. Static pressure, mean velocity and turbulence intensity in the developing region of non-reactive coaxial jets, typical of those of coaxial injector elements were determined. Detailed profiles were obtained at twelve axial locations (extending from the nozzle exit for a distance of five diameters) downstream from a single element of the Bell Aerospace H2/O2 19-element coaxial injector. These data are compared with analytical predictions made using both eddy viscosity and turbulence kinetic energy mixing models and available computer codes. Comparisons were disappointing, demonstrating the necessity of developing improved turbulence models and computational techniques before detailed predictions of practical coaxial free jet flows are attempted
- …