13 research outputs found

    Comparing lumbo-pelvic kinematics in people with and without back pain: A systematic review and meta-analysis

    Get PDF
    Background: Clinicians commonly examine posture and movement in people with the belief that correcting dysfunctional movement may reduce pain. If dysfunctional movement is to be accurately identified, clinicians should know what constitutes normal movement and how this differs in people with low back pain (LBP). This systematic review examined studies that compared biomechanical aspects of lumbo-pelvic movement in people with and without LBP. Methods. MEDLINE, Cochrane Central, EMBASE, AMI, CINAHL, Scopus, AMED, ISI Web of Science were searched from inception until January 2014 for relevant studies. Studies had to compare adults with and without LBP using skin surface measurement techniques to measure lumbo-pelvic posture or movement. Two reviewers independently applied inclusion and exclusion criteria, and identified and extracted data. Standardised mean differences and 95% confidence intervals were estimated for group differences between people with and without LBP, and where possible, meta-analyses were performed. Within-group variability in all measurements was also compared. Results: The search identified 43 eligible studies. Compared to people without LBP, on average, people with LBP display: (i) no difference in lordosis angle (8 studies), (ii) reduced lumbar ROM (19 studies), (iii) no difference in lumbar relative to hip contribution to end-range flexion (4 studies), (iv) no difference in standing pelvic tilt angle (3 studies), (v) slower movement (8 studies), and (vi) reduced proprioception (17 studies). Movement variability appeared greater for people with LBP for flexion, lateral flexion and rotation ROM, and movement speed, but not for other movement characteristics. Considerable heterogeneity exists between studies, including a lack of detail or standardization between studies on the criteria used to define participants as people with LBP (cases) or without LBP (controls). Conclusions: On average, people with LBP have reduced lumbar ROM and proprioception, and move more slowly compared to people without LBP. Whether these deficits exist prior to LBP onset is unknown

    Using biometric sensor data to monitor cancer patients during radiotherapy:Protocol for the OncoWatch feasibility study

    No full text
    BACKGROUND: Patients with head and neck cancer (HNC) experience severe side effects during radiotherapy (RT). Ongoing technological advances in wearable biometric sensors allow for the collection of objective data (eg, physical activity and heart rate), which might, in the future, help detect and counter side effects before they become severe. A smartwatch such as the Apple Watch allows for objective data monitoring outside the hospital with minimal effort from the patient. To determine whether such tools can be implemented in the oncological setting, feasibility studies are needed. OBJECTIVE: This protocol describes the design of the OncoWatch 1.0 feasibility study that assesses the adherence of patients with HNC to an Apple Watch during RT. METHODS: A prospective, single-cohort trial will be conducted at the Department of Oncology, Rigshospitalet (Copenhagen, Denmark). Patients aged ≥18 years intended for primary or postoperative curatively intended RT for HNC will be recruited. Consenting patients will be asked to wear an Apple Watch on the wrist during and until 2 weeks after RT. The study will include 10 patients. Data on adherence, data acquisition, and biometric data will be collected. Demographic data, objective toxicity scores, and hospitalizations will be documented. RESULTS: The primary outcome is to determine if it is feasible for the patients to wear a smartwatch continuously (minimum 12 hours/day) during RT. Furthermore, we will explore how the heart rate and physical activity change over the treatment course. CONCLUSIONS: The study will assess the feasibility of using the Apple Watch for home monitoring of patients with HNC. Our findings may provide novel insights into the patient’s activity levels and variations in heart rate during the treatment course. The knowledge obtained from this study will be essential for further investigating how biometric data can be used as part of symptom monitoring for patients with HNC. TRIAL REGISTRATION: ClinicalTrials.gov NCT04613232; https://clinicaltrials.gov/ct2/show/NCT04613232 INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/2609
    corecore