1,062 research outputs found
Design, fabrication, and delivery of a charge injection device as a stellar tracking device
Six 128 x 128 CID imagers fabricated on bulk silicon and with thin polysilicon upper-level electrodes were tested in a star tracking mode. Noise and spectral response were measured as a function of temperature over the range of +25 C to -40 C. Noise at 0 C and below was less than 40 rms carriers/pixel for all devices at an effective noise bandwidth of 150 Hz. Quantum yield for all devices averaged 40% from 0.4 to 1.0 microns with no measurable temperature dependence. Extrapolating from these performance parameters to those of a large (400 x 400) array and accounting for design and processing improvements, indicates that the larger array would show a further improvement in noise performance -- on the order of 25 carriers. A preliminary evaluation of the projected performance of the 400 x 400 array and a representative set of star sensor requirements indicates that the CID has excellent potential as a stellar tracking device
The Cenozoic evolution of the Roer Valley Rift System integrated at a European scale
International audienceThe Roer Valley Rift System (RVRS) is located between the West European rift and the North Sea rift system. During the Cenozoic, the RVRS was characterized by several periods of subsidence and inversion, which are linked to the evolution of the adjacent rift systems. Combination of subsidence analysis and results from the analysis of thickness distributions and fault systems allows the determination of the Cenozoic evolution and quantification of the subsidence. During the Early Paleocene, the RVRS was inverted (Laramide phase). The backstripping method shows that the RVRS was subsequently mainly affected by two periods of subsidence, during the Late Paleocene and the Oligocene–Quaternary time intervals, separated by an inversion phase during the Late Eocene. During the Oligocene and Miocene periods, the thickness of the sediments and the distribution of the active faults reveal a radical rotation of the direction of extension by about 70–80j (counter clockwise). Integration of these results at a European scale indicates that the Late Paleocene subsidence was related to the evolution of the North Sea basins, whereas the Oligocene–Quaternary subsidence is connected to the West European rift evolution. The distribution of the inverted provinces also shows that the Early Paleocene inversion (Laramide phase) has affected the whole European crust, whereas the Late Eocene inversion was restricted to the southern North Sea basins and the Channel area. Finally, comparison of these deformations in the European crust with the evolution of the Alpine chain suggests that the formation of the Alps has controlled the evolution of the European crust since the beginning of the Cenozoic
A Tree Based Language for Music Score Description.
International audienceThe presented work is part of the INScore project, an environment for the design of augmented interactive music scores, oriented towards unconven-tional uses of music notation and representation, including real-time symbolic notation capabilities. This environment is fully controllable using Open Sound Control [OSC] messages. INScore scripting language is an extended textual version of OSC messages that allows you to design scores in a modular and incre-mental way. This article presents a major revision of this language, based on the description and manipulation of trees
Quantum Hall resistance standards from graphene grown by chemical vapor deposition on silicon carbide
Replacing GaAs by graphene to realize more practical quantum Hall resistance
standards (QHRS), accurate to within in relative value, but operating
at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date,
the required accuracy has been reported, only few times, in graphene grown on
SiC by sublimation of Si, under higher magnetic fields. Here, we report on a
device made of graphene grown by chemical vapour deposition on SiC which
demonstrates such accuracies of the Hall resistance from 10 T up to 19 T at 1.4
K. This is explained by a quantum Hall effect with low dissipation, resulting
from strongly localized bulk states at the magnetic length scale, over a wide
magnetic field range. Our results show that graphene-based QHRS can replace
their GaAs counterparts by operating in as-convenient cryomagnetic conditions,
but over an extended magnetic field range. They rely on a promising hybrid and
scalable growth method and a fabrication process achieving low-electron density
devices.Comment: 12 pages, 8 figure
The 2007 eruptions and caldera collapse of the Piton de la Fournaise volcano (La Réunion Island) from tilt analysis at a single very broadband seismic station
International audienceSeismic records from La Réunion Island very broadband Geoscope station are investigated to constrain the link between the 2007 eruptive sequence and the related caldera collapse of the Piton de la Fournaise volcano. Tilt estimated from seismic records reveals that the three 2007 eruptions belong to a single inflation-deflation cycle. Tilt trend indicates that the small-volume summit eruption of 18 February occurred during a phase of continuous inflation that started in January 2007. Inflation decelerated 24 days before a second short-lived, small-volume eruption on 30 March, almost simultaneous with a sudden, large-scale deflation of the volcano. Deflation rate, which had stabilized at relatively low level, increased anew on 1 April while no magma was erupted, followed on 2 April by a major distal eruption and on 5 April by a summit caldera collapse. Long-term tilt variation suggests that the 2007 eruptive succession was triggered by a deep magma input
Demonstration of coherent emission from high- photonic crystal nanolasers at room temperature
We report on lasing at room temperature and at telecommunications wavelength
from photonic crystal nanocavities based on InAsP/InP quantum dots. Such laser
cavities with a small modal volume and high quality factor display a high
spontaneous emission coupling factor beta. Lasing is confirmed by measuring the
second order autocorrelation function. A smooth transition from chaotic to
coherent emission is observed, and coherent emission is obtained at 8 times the
threshold power
Al<sub>5+α</sub>Si<sub>5+δ</sub>N<sub>12</sub>, a new Nitride compound
The family of III-Nitride semiconductors has been under intensive research for almost 30 years and has revolutionized lighting applications at the dawn of the 21st century. However, besides the developments and applications achieved, nitride alloys continue to fuel the quest for novel materials and applications. We report on the synthesis of a new nitride-based compound by using annealing of AlN heteroepitaxial layers under a Si-atmosphere at temperatures between 1350 °C and 1550 °C. The structure and stoichiometry of this compound are investigated by high resolution transmission electron microscopy (TEM) techniques and energy dispersive X-Ray (EDX) spectroscopy. Results are supported by density functional theory (DFT) calculations. The identified structure is a derivative of the parent wurtzite AlN crystal where the anion sublattice is fully occupied by N atoms and the cation sublattice is the stacking of 2 different planes along lt;0001gt;: The first one exhibits a ×3 periodicity along lt;11–20gt; with 1/3 of the sites being vacant. The rest of the sites in the cation sublattice are occupied by an equal number of Si and Al atoms. Assuming a semiconducting alloy, a range of stoichiometries is proposed, Al5+αSi5+δN12 with α being between −2/3 and 1/4 and δ between 0 and 3/4. © 2019, The Author(s)
- …