20 research outputs found

    Metal stearate distributions in modern artists' oil paints: surface and cross-sectional investigation of reference paint films using conventional and synchrotron infrared microspectroscopy

    No full text
    Zinc oxide is a prevalent industrial-age pigment that readily reacts with fatty acids in oil-based paints to form zinc carboxylates. Zinc stearate aggregates are associated with deterioration in late nineteenth and twentieth century paintings. The current study uses both conventional and synchrotron Fourier transform infrared spectroscopy (FT-IR) to investigate metal carboxylate composition in a range of naturally aged artists' oil paints and reference paint film draw-downs. The paints contain zinc oxide alone or in combination with lead white, titanium white, and aluminum stearate and are prepared with linseed and safflower oils. Attenuated total reflectance (ATR)-FT-IR using the conventional source identifies marked differences in carboxylate profiles between exposed and protected surfaces in a large number of samples. Synchrotron FT-IR microspectroscopy of thin paint cross-sections maps metal carboxylate distributions at high spatial resolution and resolves broad concentration gradients and micrometer-scale phase separation of carboxylate species. Aluminum stearate, a common paint additive, is found to influence the distribution of zinc carboxylates more strongly than pigment composition or oil type. The presence of aluminum stearate results in higher concentrations and more pronounced separation of saturated C16 and C18 chain zinc carboxylates in the margin of paint nearest the polyester substrate. The presence of aluminum stearate in association with zinc oxide has a clear influence on zinc carboxylate formation and distribution, with potential implications for long term stability of vulnerable paintings
    corecore