6,263 research outputs found
Exact evolution of time-reversible symplectic integrators and their phase error for the harmonic oscillator
The evolution of any factorized time-reversible symplectic integrators, when
applied to the harmonic oscillator, can be exactly solved in a closed form. The
resulting modified Hamiltonians demonstrate the convergence of the Lie series
expansions. They are also less distorted than modified Hamiltonian of
non-reversible algorithms. The analytical form for the modified angular
frequency can be used to assess the phase error of any time-reversible
algorithm.Comment: Submitted to Phys. Lett. A, Six Pages two Column
Solution of the Young-Laplace equation for three particles
This paper presents the solution to the liquid bridge profile formed between three equally
sized spherical primary particles. The particles are equally separated, with sphere centres
located on the vertices of an equilateral triangle. Equations for the problem are derived and
solved numerically for given constant mean curvature H0, contact angle , and inter-particle
separation distance S. The binding force between particles is calculated and plotted as a
function of liquid bridge volume for a particular example. Agreement with experiment is
provided
Quantum Statistical Calculations and Symplectic Corrector Algorithms
The quantum partition function at finite temperature requires computing the
trace of the imaginary time propagator. For numerical and Monte Carlo
calculations, the propagator is usually split into its kinetic and potential
parts. A higher order splitting will result in a higher order convergent
algorithm. At imaginary time, the kinetic energy propagator is usually the
diffusion Greens function. Since diffusion cannot be simulated backward in
time, the splitting must maintain the positivity of all intermediate time
steps. However, since the trace is invariant under similarity transformations
of the propagator, one can use this freedom to "correct" the split propagator
to higher order. This use of similarity transforms classically give rises to
symplectic corrector algorithms. The split propagator is the symplectic kernel
and the similarity transformation is the corrector. This work proves a
generalization of the Sheng-Suzuki theorem: no positive time step propagators
with only kinetic and potential operators can be corrected beyond second order.
Second order forward propagators can have fourth order traces only with the
inclusion of an additional commutator. We give detailed derivations of four
forward correctable second order propagators and their minimal correctors.Comment: 9 pages, no figure, corrected typos, mostly missing right bracket
Geodesics on Lie groups: Euler equations and totally geodesic subgroup
The geodesic motion on a Lie group equipped with a left or right invariant Riemannian
metric is governed by the Euler-Arnold equation. This paper investigates conditions on the
metric in order for a given subgroup to be totally geodesic. Results on the construction
and characterisation of such metrics are given. The setting works both in the classical nite
dimensional case, and in the category of in nite dimensional Fr echet Lie groups, in which
di eomorphism groups are included. Using the framework we give new examples of both nite
and in nite dimensional totally geodesic subgroups. In particular, based on the cross helicity,
we construct right invariant metrics such that a given subgroup of exact volume preserving
di eomorphisms is totally geodesic.
The paper also gives a general framework for the representation of Euler-Arnold equations
in arbitrary choice of dual pairing
Higher-order splitting algorithms for solving the nonlinear Schr\"odinger equation and their instabilities
Since the kinetic and the potential energy term of the real time nonlinear
Schr\"odinger equation can each be solved exactly, the entire equation can be
solved to any order via splitting algorithms. We verified the fourth-order
convergence of some well known algorithms by solving the Gross-Pitaevskii
equation numerically. All such splitting algorithms suffer from a latent
numerical instability even when the total energy is very well conserved. A
detail error analysis reveals that the noise, or elementary excitations of the
nonlinear Schr\"odinger, obeys the Bogoliubov spectrum and the instability is
due to the exponential growth of high wave number noises caused by the
splitting process. For a continuum wave function, this instability is
unavoidable no matter how small the time step. For a discrete wave function,
the instability can be avoided only for \dt k_{max}^2{<\atop\sim}2 \pi, where
.Comment: 10 pages, 8 figures, submitted to Phys. Rev.
Any-order propagation of the nonlinear Schroedinger equation
We derive an exact propagation scheme for nonlinear Schroedinger equations.
This scheme is entirely analogous to the propagation of linear Schroedinger
equations. We accomplish this by defining a special operator whose algebraic
properties ensure the correct propagation. As applications, we provide a simple
proof of a recent conjecture regarding higher-order integrators for the
Gross-Pitaevskii equation, extend it to multi-component equations, and to a new
class of integrators.Comment: 10 pages, no figures, submitted to Phys. Rev.
- …