16,250 research outputs found
Large N Expansion and Softly Broken Supersymmetry
We examine the supersymmetric non-linear O(N) sigma model with a soft
breaking term. In two dimensions, we found that the mass difference between
supersymmetric partner fields vanishes accidentally. In three dimensions, the
mass difference is observed but O(N) symmetry is always broken also in the
strong coupling region.Comment: Plain Latex(8pages), No Figur
Evolution of the curvature perturbations during warm inflation
This paper considers warm inflation as an interesting application of
multi-field inflation. Delta-N formalism is used for the calculation of the
evolution of the curvature perturbations during warm inflation. Although the
perturbations considered in this paper are decaying after the horizon exit, the
corrections to the curvature perturbations sourced by these perturbations can
remain and dominate the curvature perturbations at large scales. In addition to
the typical evolution of the curvature perturbations, inhomogeneous diffusion
rate is considered for warm inflation, which may lead to significant
non-Gaussianity of the spectrum.Comment: 23 pages, 1 figure, fixed references, accepted for publication in
  JCA
Aspects of warm-flat directions
Considering the mechanism of dissipative slow-roll that has been used in warm
inflation scenario, we show that dissipation may alter usual cosmological
scenarios associated with SUSY-flat directions. We mainly consider SUSY-flat
directions that have strong interactions with non-flat directions and may cause
strong dissipation both in thermal and non-thermal backgrounds. An example is
the Affleck-Dine mechanism in which dissipation may create significant (both
qualitative and quantitative) discrepancies between the conventional scenario
and the dissipative one. We also discuss several mechanisms of generating
curvature perturbations in which the dissipative field, which is distinguished
from the inflaton field, can be used as the source of cosmological
perturbations. Considering the Morikawa-Sasaki dissipative coefficient, the
damping caused by the dissipation may be significant for many MSSM flat
directions even if the dissipation is far from thermal equilibrium.Comment: 22 pages, accepted for publication in International Journal of Modern
  Physics 
Tadpole Method and Supersymmetric O(N) Sigma Model
We examine the phase structures of the supersymmetric O(N) sigma model in two
and three dimensions by using the tadpole method. Using this simple method, the
calculation is largely simplified and the characteristics of this theory become
clear. We also examine the problem of the fictitious negative energy state.Comment: Plain Latex(12pages), No figur
Phase diagrams of a classical two-dimensional Heisenberg antiferromagnet with single-ion anisotropy
A classical variant of the two-dimensional anisotropic Heisenberg model
reproducing inelastic neutron scattering experiments on La_5 Ca_9 Cu_24 O_41
[M. Matsuda et al., Phys.Rev. B 68, 060406(R) (2003)] is analysed using mostly
Monte Carlo techniques. Phase diagrams with external fields parallel and
perpendicular to the easy axis of the anisotropic interactions are determined,
including antiferromagnetic and spin-flop phases. Mobile spinless defects, or
holes, are found to form stripes which bunch, debunch and break up at a phase
transition. A parallel field can lead to a spin-flop phase.Comment: 9 pages, 9 figures; final version as accepted by Phys. Rev. B (Fig. 5
  replaced, added remarks in Secs. I, III, and V
On gaugino condensation in the effective theory
We analyze the gaugino condensation in the effective theory for N=1 SU(N)
Supersymmetric QCD with  flavors. It is known that taking the vacuum
expectation value of the matter field to be infinite, we can show that gaugino
condensation can occur. At such a limit we should consider only pure
supersymmetric Yang-Mills theory. But when we include an interaction term of
order , the situation can change. We analyze the effect of this
interaction term and examine the gaugino condensation in the low energy
Yang-Mills theory by using the scheme of Nambu-Jona-Lasinio.Comment: 5 pages, Plain Late
Q ball inflation
We show that inflation can occur in the core of a Q-ball.Comment: 11 pages, latex2e, no figure, references added, final version to
  appear in PR
String production after angled brane inflation
We describe string production after angled brane inflation. First, we point
out that there was a discrepancy in previous discussions. The expected tension
of the cosmic string calculated from the four-dimensional effective Lagrangian
did not match the one obtained in the brane analysis. In the previous analysis,
the cosmic string is assumed to correspond to the lower-dimensional daughter
brane, which wraps the same compactified space as the original mother brane. In
this case, however, the tension of the daughter brane cannot depend on the
angle (\theta). On the other hand, from the analysis of the effective
Lagrangian for tachyon condensation, it is easy to see that the tension of the
cosmic string must be proportional to \theta, when \theta << 1. This is an
obvious discrepancy that must be explained by consideration of the explicit
brane dynamics. In this paper, we will solve this problem by introducing a
simple idea. We calculate the tension of the string in the two cases, which
matches precisely. The cosmological constraint for angled inflation is relaxed,
because the expected tension of the cosmic string becomes smaller than the one
obtained in previous arguments, by a factor of \theta.Comment: 13pages, 3 figures, typos correcte
Elliptic Inflation: Generating the curvature perturbation without slow-roll
There are many inflationary models in which inflaton field does not satisfy
the slow-roll condition. However, in such models, it is always difficult to
generate the curvature perturbation during inflation. Thus, to generate the
curvature perturbation, one must introduce another component to the theory. To
cite a case, curvatons may generate dominant part of the curvature perturbation
after inflation. However, we have a question whether it is unrealistic to
consider the generation of the curvature perturbation during inflation without
slow-roll. Assuming multi-field inflation, we encounter the generation of the
curvature perturbation during inflation without slow-roll. The potential along
equipotential surface is flat by definition and thus we do not have to worry
about symmetry. We also discuss about KKLT models, in which corrections lifting
the inflationary direction may not become a serious problem if there is a
symmetry enhancement at the tip (not at the moving brane) of the inflationary
throat.Comment: 27pages, 8figures, to appear in JCA
Cosmological perturbations from inhomogeneous preheating and multi-field trapping
We consider inhomogeneous preheating in a multi-field trapping model. The
curvature perturbation is generated by inhomogeneous preheating which induces
multi-field trapping at the enhanced symmetric point (ESP), and results in
fluctuation in the number of e-foldings. Instead of considering simple
reheating after preheating, we consider a scenario of shoulder inflation
induced by the trapping. The fluctuation in the number of e-foldings is
generated during this weak inflationary period, when the additional light
scalar field is trapped at the local maximum of its potential. The situation
may look similar to locked or thermal inflation or even to hybrid inflation,
but we will show that the present mechanism of generating the curvature
perturbation is very different from these others. Unlike the conventional
trapped inflationary scenario, we do not make the assumption that an ESP
appears at some unstable point on the inflaton potential. This assumption is
crucial in the original scenario, but it is not important in the multi-field
model. We also discuss inhomogeneous preheating at late-time oscillation, in
which the magnitude of the curvature fluctuation can be enhanced to accommodate
low inflationary scale.Comment: 18pages, 2 figures, to appear in JHE
- …
