43 research outputs found

    STUDIES ON THE GROWTH, CHARACTERIZATION, PHYSICOCHEMICAL PROPERTIES AND ANTI-BACTERIAL ACTIVITY OF FERULIC ACID CRYSTALS

    Get PDF
    Objective: The main objective of this research is to study the chosen Ferulic acid for pharmaceutical application through crystal growth technique. The interest of growing crystals helps in studying the physical and chemical properties of the title compound. The computational method provides a detailed interpretation of the compound under study.Methods: Crystallization from solution is a very crucial process in the manufacture of active pharmaceutical ingredients (APIs). Ferulic acid (FA) corresponds to monohydroxylatedcinnamic acid. The biological efficiency of this kind of phenolic systems is expected to be dose-and structure-dependent, which renders the studies for the understanding of their multi-functional biological action. In the present work, ferulic acid crystals were grown using slow evaporation technique. The crystalline nature was revealed from the powder x-ray diffraction technique. The functional groups were determined using FTIR and FT-RAMAN spectra and compared with the theoretical data obtained using computational DFT method. Thermal and physicochemical stability of the grown crystal was examined by Thermogravimetric analysis (TGA) and Differential thermal analysis (DTA) studies. The charge transfer within the molecule was studied with the help of Natural Bond Orbital (NBO) analysis. The anti-bacterial activity was carried out for the title compound using disc diffusion method. The test compounds were screened in vitro for their antibacterial activity against two Gram-positive species (B. cereus and B. substilis) and three Gram-negative species (E. coli, P. vulgaris and S. typhi) of bacterial strains by the disc diffusion method.Results: The grown crystal was pure and crystalline in nature. The functional groups were confirmed by FTIR and FT-Raman analysis. The melting point of the sample was found to be 172 °C. The HOMO-LUMO energy gap was calculated as 3.87eV. The first hyper polarizability was found to be 10.612 x 10-30 esu. The molecular geometry revealed the Cs symmetry of the molecule. NBO analysis confirmed the intramolecular charge transfer from lone pair oxygen atom to Ï€*(C1-C6) and σ*(C17-O19). The compound is dominant for the B. substilis organism which is revealed from the zone of inhibition.Conclusion: The grown Ferulic acid crystals confirmed to have good anti-bacterial activity and the theoretical study proves the biological activity of the compound.Â

    EXPERIMENTAL CUM THEORETICAL EVALUATION OF MOLECULAR STRUCTURE, VIBRATIONAL SPECTRA, NBO, UV, NMR, OF A BIOACTIVE COMPOUND – PHENOXYACETOHYDRAZIDE

    Full text link
    Hydrazide-Hydrazone compounds are key species for a range of bioactivities. The first complete density functional theoretical study of Phenoxyacetohydrazide(PAH) is reported. The normal mode frequencies, intensities and the corresponding vibrational assignments were calculated using the GAUSSIAN 09W set of quantum chemistry codes at the DFT/B3LYP levels of theory using the 6-311++G** basis set. Stability of the molecule arising from hyperconjugative interactions has been probed using NBO analysis. 1H and 13C NMR spectra have been analysed and the chemical shifts were calculated using the gauge independent atomic orbital(GIAO) method. The theoretical UV-Vis spectrum and the electronic properties, such as HOMO(Highest occupied molecular orbital) and LUMO (Lowest unoccupied molecular orbital) were performed by time dependent density functional theory(TD-DFT) approach.</jats:p

    Molecular Structure, NMR, HOMO, LUMO, and Vibrational Analysis of O-Anisic Acid and Anisic Acid Based on DFT Calculations

    No full text
    This work deals with the vibrational spectroscopy of O-Anisic acid (OAA) and Anisic acid (AA). The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT) with standard B3LYP/6-31G** method and basis set combinations. The vibrational spectra were interpreted, with the aid of normal coordinate analysis based on a scaled quantum mechanical force field. The infrared and Raman spectra were also predicted from the calculated intensities. The effects of carbonyl and methyl substitutions on the structure and vibrational frequencies have been investigated. Comparison of simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. The 13C and 1H NMR chemical shifts of the DFA and CA molecules were calculated using the gauge-invariant-atomic orbital (GIAO) method in DMSO solution using IEF-PCM model and compared with experimental data
    corecore