1,220 research outputs found
Fractional analytic index
For a finite rank projective bundle over a compact manifold, so associated to
a torsion, Dixmier-Douady, 3-class, w, on the manifold, we define the ring of
differential operators `acting on sections of the projective bundle' in a
formal sense. In particular, any oriented even-dimensional manifold carries a
projective spin Dirac operator in this sense. More generally the corresponding
space of pseudodifferential operators is defined, with supports sufficiently
close to the diagonal, i.e. the identity relation. For such elliptic operators
we define the numerical index in an essentially analytic way, as the trace of
the commutator of the operator and a parametrix and show that this is homotopy
invariant. Using the heat kernel method for the twisted, projective spin Dirac
operator, we show that this index is given by the usual formula, now in terms
of the twisted Chern character of the symbol, which in this case defines an
element of K-theory twisted by w; hence the index is a rational number but in
general it is not an integer.Comment: 23 pages, Latex2e, final version, to appear in JD
A certain class of Laplace transforms with applications to reaction and reaction-diffusion equations
A class of Laplace transforms is examined to show that particular cases of
this class are associated with production-destruction and reaction-diffusion
problems in physics, study of differences of independently distributed random
variables and the concept of Laplacianness in statistics, alpha-Laplace and
Mittag-Leffler stochastic processes, the concepts of infinite divisibility and
geometric infinite divisibility problems in probability theory and certain
fractional integrals and fractional derivatives. A number of applications are
pointed out with special reference to solutions of fractional reaction and
reaction-diffusion equations and their generalizations.Comment: LaTeX, 12 pages, corrected typo
Boltzmann-Gibbs Entropy Versus Tsallis Entropy: Recent Contributions to Resolving the Argument of Einstein Concerning "Neither Herr Boltzmann nor Herr Planck has given a definition of W"?
Classical statistical mechanics of macroscopic systems in equilibrium is
based on Boltzmann's principle. Tsallis has proposed a generalization of
Boltzmann-Gibbs statistics. Its relation to dynamics and nonextensivity of
statistical systems are matters of intense investigation and debate. This essay
review has been prepared at the occasion of awarding the 'Mexico Prize for
Science and Technology 2003'to Professor Constantino Tsallis from the Brazilian
Center for Research in Physics.Comment: 5 pages, LaTe
Space-time fractional reaction-diffusion equations associated with a generalized Riemann-Liouville fractional derivative
This paper deals with the investigation of the computational solutions of an
unified fractional reaction-diffusion equation, which is obtained from the
standard diffusion equation by replacing the time derivative of first order by
the generalized Riemann-Liouville fractional derivative defined in Hilfer et
al. , and the space derivative of second order by the Riesz-Feller fractional
derivative, and adding a function . The solution is derived by the
application of the Laplace and Fourier transforms in a compact and closed form
in terms of Mittag-Leffler functions. The main result obtained in this paper
provides an elegant extension of the fundamental solution for the space-time
fractional diffusion equation obtained earlier by Mainardi et al., and the
result very recently given by Tomovski et al.. At the end, extensions of the
derived results, associated with a finite number of Riesz-Feller space
fractional derivatives, are also investigated.Comment: 15 pages, LaTe
- …