1,220 research outputs found

    Fractional analytic index

    Full text link
    For a finite rank projective bundle over a compact manifold, so associated to a torsion, Dixmier-Douady, 3-class, w, on the manifold, we define the ring of differential operators `acting on sections of the projective bundle' in a formal sense. In particular, any oriented even-dimensional manifold carries a projective spin Dirac operator in this sense. More generally the corresponding space of pseudodifferential operators is defined, with supports sufficiently close to the diagonal, i.e. the identity relation. For such elliptic operators we define the numerical index in an essentially analytic way, as the trace of the commutator of the operator and a parametrix and show that this is homotopy invariant. Using the heat kernel method for the twisted, projective spin Dirac operator, we show that this index is given by the usual formula, now in terms of the twisted Chern character of the symbol, which in this case defines an element of K-theory twisted by w; hence the index is a rational number but in general it is not an integer.Comment: 23 pages, Latex2e, final version, to appear in JD

    A certain class of Laplace transforms with applications to reaction and reaction-diffusion equations

    Full text link
    A class of Laplace transforms is examined to show that particular cases of this class are associated with production-destruction and reaction-diffusion problems in physics, study of differences of independently distributed random variables and the concept of Laplacianness in statistics, alpha-Laplace and Mittag-Leffler stochastic processes, the concepts of infinite divisibility and geometric infinite divisibility problems in probability theory and certain fractional integrals and fractional derivatives. A number of applications are pointed out with special reference to solutions of fractional reaction and reaction-diffusion equations and their generalizations.Comment: LaTeX, 12 pages, corrected typo

    Boltzmann-Gibbs Entropy Versus Tsallis Entropy: Recent Contributions to Resolving the Argument of Einstein Concerning "Neither Herr Boltzmann nor Herr Planck has given a definition of W"?

    Full text link
    Classical statistical mechanics of macroscopic systems in equilibrium is based on Boltzmann's principle. Tsallis has proposed a generalization of Boltzmann-Gibbs statistics. Its relation to dynamics and nonextensivity of statistical systems are matters of intense investigation and debate. This essay review has been prepared at the occasion of awarding the 'Mexico Prize for Science and Technology 2003'to Professor Constantino Tsallis from the Brazilian Center for Research in Physics.Comment: 5 pages, LaTe

    Space-time fractional reaction-diffusion equations associated with a generalized Riemann-Liouville fractional derivative

    Full text link
    This paper deals with the investigation of the computational solutions of an unified fractional reaction-diffusion equation, which is obtained from the standard diffusion equation by replacing the time derivative of first order by the generalized Riemann-Liouville fractional derivative defined in Hilfer et al. , and the space derivative of second order by the Riesz-Feller fractional derivative, and adding a function Ï•(x,t)\phi(x,t). The solution is derived by the application of the Laplace and Fourier transforms in a compact and closed form in terms of Mittag-Leffler functions. The main result obtained in this paper provides an elegant extension of the fundamental solution for the space-time fractional diffusion equation obtained earlier by Mainardi et al., and the result very recently given by Tomovski et al.. At the end, extensions of the derived results, associated with a finite number of Riesz-Feller space fractional derivatives, are also investigated.Comment: 15 pages, LaTe
    • …
    corecore