14,836 research outputs found

    High resolution kinematics of galactic globular clusters. II. On the significance of velocity dispersion measurements

    Get PDF
    Small number statistics may heavily affect the structure of the broadening function in integrated spectra of galactic globular cluster centers. As a consequence, it is a priori unknown how closely line broadening measure- ments gauge the intrinsic velocity dispersions at the cores of these stel- lar systems. We have tackled this general problem by means of Monte Carlo simulations. An examination of the mode and the frequency distribution of the measured values of the simulations indicates that the low value measured for the velocity dispersion of M30 (Zaggia etal 1992) is likely a reliable estimate of the velocity dispersion at the center of this cluster. The same methodology applied to the case of M15 suggests that the steep inward rise of the velocity dispersion found by Peterson, Seitzer and Cudworth (1989) is real, although less pronounced. Large-aperture observa- tions are less sensitive to statistical fluctuations, but are unable to detect strong variations in the dispersion wich occur within the aperture itself.Comment: 6 pages, 8 figures upon request, Latex A&A style version 3.0, DAPD-20

    Nano-Hertz Gravitational Waves Searches with Interferometric Pulsar Timing Experiments

    Full text link
    We estimate the sensitivity to nano-Hertz gravitational waves of pulsar timing experiments in which two highly-stable millisecond pulsars are tracked simultaneously with two neighboring radio telescopes that are referenced to the same time-keeping subsystem (i.e. "the clock"). By taking the difference of the two time-of-arrival residual data streams we can exactly cancel the clock noise in the combined data set, thereby enhancing the sensitivity to gravitational waves. We estimate that, in the band (10−9−10−810^{-9} - 10^{-8}) Hz, this "interferometric" pulsar timing technique can potentially improve the sensitivity to gravitational radiation by almost two orders of magnitude over that of single-telescopes. Interferometric pulsar timing experiments could be performed with neighboring pairs of antennas of the forthcoming large arraying projects.Comment: Paper submitted to Phys. Rev. Letters. It is 9 pages long, and includes 2 figure

    Kink-antikink, trapping bags and five-dimensional Gauss-Bonnet gravity

    Get PDF
    Five-dimensional Gauss-Bonnet gravity, with one warped extra-dimension, allows classes of solutions where two scalar fields combine either in a kink-antikink system or in a trapping bag configuration. While the kink-antikink system can be interpreted as a pair of gravitating domain walls with opposite topological charges, the trapping bag solution consists of a domain wall supplemented by a non-topological defect. In both classes of solutions, for large absolute values of the bulk coordinate (i.e. far from the core of the defects), the geometry is given by five-dimensional anti-de Sitter space.Comment: 8 pages, 2 figure

    Pork Versus Public Goods: An Experimental Study of Public Good Provision Within a Legislative Bargaining Framework

    Get PDF
    We experimentally investigate a legislative bargaining model with both public and particularistic goods. Consistent with the qualitative implications of the model: There is near exclusive public good provision in the pure public good region, in the pure private good region minimum winning coalitions sharing private goods predominate, and in the ‘mixed’ region proposers generally take some particularistic goods for themselves, allocating the remainder to public goods. As in past experiments, proposer ower is not nearly as strong as predicted, resulting in public good provision decreasing in the mixed region as its relative value increases, which is inconsistent with the theory.Legislative Bargaining, Public Goods, Efficiency

    Mass and Concentration estimates from Weak and Strong Gravitational Lensing: a Systematic Study

    Full text link
    We study how well halo properties of galaxy clusters, like mass and concentration, are recovered using lensing data. In order to generate a large sample of systems at different redshifts we use the code MOKA. We measure halo mass and concentration using weak lensing data alone (WL), fitting to an NFW profile the reduced tangential shear profile, or by combining weak and strong lensing data, by adding information about the size of the Einstein radius (WL+SL). For different redshifts, we measure the mass and the concentration biases and find that these are mainly caused by the random orientation of the halo ellipsoid with respect to the line-of-sight. Since our simulations account for the presence of a bright central galaxy, we perform mass and concentration measurements using a generalized NFW profile which allows for a free inner slope. This reduces both the mass and the concentration biases. We discuss how the mass function and the concentration mass relation change when using WL and WL+SL estimates. We investigate how selection effects impact the measured concentration-mass relation showing that strong lens clusters may have a concentration 20-30% higher than the average, at fixed mass, considering also the particular case of strong lensing selected samples of relaxed clusters. Finally, we notice that selecting a sample of relaxed galaxy clusters, as is done in some cluster surveys, explain the concentration-mass relation biases.Comment: (1) DIFA-UniBO, (2) INAF-OABo, (3) INFN-BO, (4) JPL-Pasadena 18 pages, 19 figures - accepted for publication by MNRAS, two figures added for comparison with SGAS-SDSS and LoCuSS cluster

    Time-dependent gravitating solitons in five dimensional warped space-times

    Get PDF
    Time-dependent soliton solutions are explicitly derived in a five-dimensional theory endowed with one (warped) extra-dimension. Some of the obtained geometries, everywhere well defined and technically regular, smoothly interpolate between two five-dimensional anti-de Sitter space-times for fixed value of the conformal time coordinate. Time dependent solutions containing both topological and non-topological sectors are also obtained. Supplementary degrees of freedom can be also included and, in this case, the resulting multi-soliton solutions may describe time-dependent kink-antikink systems.Comment: 19 pages, 10 figure

    Getting the Lorentz transformations without requiring an invariant speed

    Full text link
    The structure of the Lorentz transformations follows purely from the absence of privileged inertial reference frames and the group structure (closure under composition) of the transformations---two assumptions that are simple and physically necessary. The existence of an invariant speed is \textit{not} a necessary assumption, and in fact is a consequence of the principle of relativity (though the finite value of this speed must, of course, be obtained from experiment). Von Ignatowsky derived this result in 1911, but it is still not widely known and is absent from most textbooks. Here we present a completely elementary proof of the result, suitable for use in an introductory course in special relativity.Comment: 4 pages, 1 figur

    Vulnerability and Protection of Critical Infrastructures

    Full text link
    Critical infrastructure networks are a key ingredient of modern society. We discuss a general method to spot the critical components of a critical infrastructure network, i.e. the nodes and the links fundamental to the perfect functioning of the network. Such nodes, and not the most connected ones, are the targets to protect from terrorist attacks. The method, used as an improvement analysis, can also help to better shape a planned expansion of the network.Comment: 4 pages, 1 figure, 3 table
    • …
    corecore