12 research outputs found

    Tunability of the dielectric response of epitaxially strained SrTiO3 from first principles

    Get PDF
    The effect of in-plane strain on the nonlinear dielectric properties of SrTiO3 epitaxial thin films is calculated using density-functional theory within the local-density approximation. Motivated by recent experiments, the structure, zone-center phonons, and dielectric properties with and without an external electric field are evaluated for several misfit strains within +-3% of the calculated cubic lattice parameter. In these calculations, the in-plane lattice parameters are fixed, and all remaining structural parameters are permitted to relax. The presence of an external bias is treated approximately by applying a force to each ion proportional to the electric field. After obtaining zero-field ground state structures for various strains, the zone-center phonon frequencies and Born effective charges are computed, yielding the zero-field dielectric response. The dielectric response at finite electric field bias is obtained by computing the field dependence of the structure and polarization using an approximate technique. The results are compared with recent experiments and a previous phenomenological theory. The tunability is found to be strongly dependent on the in-plane lattice parameter, showing markedly different behavior for tensile and compressive strains. Our results are expected to be of use for isolating the role of strain in the tunability of real ultrathin epitaxial films.Comment: 11 pages, with postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/ant_srti/index.htm

    Quantum Fluctuations Driven Orientational Disordering: A Finite-Size Scaling Study

    Full text link
    The orientational ordering transition is investigated in the quantum generalization of the anisotropic-planar-rotor model in the low temperature regime. The phase diagram of the model is first analyzed within the mean-field approximation. This predicts at T=0T=0 a phase transition from the ordered to the disordered state when the strength of quantum fluctuations, characterized by the rotational constant Θ\Theta, exceeds a critical value ΘcMF\Theta_{\rm c}^{MF}. As a function of temperature, mean-field theory predicts a range of values of Θ\Theta where the system develops long-range order upon cooling, but enters again into a disordered state at sufficiently low temperatures (reentrance). The model is further studied by means of path integral Monte Carlo simulations in combination with finite-size scaling techniques, concentrating on the region of parameter space where reentrance is predicted to occur. The phase diagram determined from the simulations does not seem to exhibit reentrant behavior; at intermediate temperatures a pronounced increase of short-range order is observed rather than a genuine long-range order.Comment: 27 pages, 8 figures, RevTe

    Third order dielectric susceptibility in a model quantum paraelectric

    Full text link
    In the context of perovskite quantum paraelectrics, we study the effects of a quadrupolar interaction JqJ_q, in addition to the standard dipolar one JdJ_d. We concentrate here on the nonlinear dielectric response χP(3)\chi_{P}^{(3)}, as the main response function sensitive to quadrupolar (in our case antiquadrupolar) interactions. We employ a 3D quantum four-state lattice model and mean-field theory. The results show that inclusion of quadrupolar coupling of moderate strength (Jq14JdJ_q \sim {{1}\over{4}} J_d) is clearly accompanied by a double change of sign of χP(3)\chi_{P}^{(3)} from negative to positive, near the quantum temperature TQT_Q where the quantum paraelectric behaviour sets in. We fit our χP(3)\chi_{P}^{(3)} to recent experimental data for SrTiO3_3, where the sign change is identified close to TQ37KT_Q \sim 37 K.Comment: 22 page
    corecore