3,967 research outputs found

    Explosions and Outflows during Galaxy Formation

    Get PDF
    We consider an explosion at the center of a halo which forms at the intersection of filaments inside a cosmological pancake, a convenient test-bed model for galaxy formation. ASPH/P3M simulations reveal that such explosions are anisotropic. The energy and metals are channeled into the low density regions, away from the pancake. The pancake remains essentially undisturbed, even if the explosion is strong enough to blow away all the gas located inside the halo and reheat the IGM surrounding the pancake. Infall quickly replenishes this ejected gas and gradually restores the gas fraction as the halo continues to grow. Estimates of the collapse epoch and SN energy-release for galaxies of different mass in the CDM model can relate these results to scale-dependent questions of blow-out and blow-away and their implication for early IGM heating and metal enrichment and the creation of gas-poor dwarf galaxies.Comment: To appear in "The 20th Texas Symposium on Relativistic Astrophysics", eds. H. Martel and J.C. Wheeler, AIP, in press (2001) (3 pages, 2 figures

    The Evolution of Dark-Matter Dominated Cosmological Halos

    Full text link
    Adaptive SPH and N-body simulations were carried out to study the evolution of the equilibrium structure of dark matter halos that result from the gravitational instability and fragmentation of cosmological pancakes. Such halos resemble those formed by hierarchical clustering from realistic initial conditions in a CDM universe and, therefore, serve as a test-bed model for studying halo dynamics. The dark matter density profile is close to the universal halo profile identified previously from N-body simulations of structure formation in CDM, with a total mass and concentration parameter which grow linearly with scale factor a. When gas is included, this concentration parameter is slightly larger than the pure N-body result. We also find that the dark matter velocity distribution is less isotropic and more radial than found by N-body simulations of CDM.Comment: To appear in "The 20th Texas Symposium on Relativistic Astrophysics", eds. H. Martel and J.C. Wheeler, AIP, in press (2001) (3 pages, 2 figures

    Anisotropic Galactic Outflows and Enrichment of the Intergalactic Medium. I: Monte Carlo Simulations

    Get PDF
    We have developed an analytical model to describe the evolution of anisotropic galactic outflows. With it, we investigate the impact of varying opening angle on galaxy formation and the evolution of the IGM. We have implemented this model in a Monte Carlo algorithm to simulate galaxy formation and outflows in a cosmological context. Using this algorithm, we have simulated the evolution of a comoving volume of size [12h^(-1)Mpc]^3 in the LCDM universe. Starting from a Gaussian density field at redshift z=24, we follow the formation of ~20,000 galaxies, and simulate the galactic outflows produced by these galaxies. When these outflows collide with density peaks, ram pressure stripping of the gas inside the peak may result. This occurs in around half the cases and prevents the formation of galaxies. Anisotropic outflows follow the path of least resistance, and thus travel preferentially into low-density regions, away from cosmological structures (filaments and pancakes) where galaxies form. As a result, the number of collisions is reduced, leading to the formation of a larger number of galaxies. Anisotropic outflows can significantly enrich low-density systems with metals. Conversely, the cross-pollution in metals of objects located in a common cosmological structure, like a filament, is significantly reduced. Highly anisotropic outflows can travel across cosmological voids and deposit metals in other, unrelated cosmological structures.Comment: 32 pages, 9 figures (2 color). Revised version accepted in Ap
    • …
    corecore