8,867 research outputs found

    Information Ranking and Power Laws on Trees

    Full text link
    We study the situations when the solution to a weighted stochastic recursion has a power law tail. To this end, we develop two complementary approaches, the first one extends Goldie's (1991) implicit renewal theorem to cover recursions on trees; and the second one is based on a direct sample path large deviations analysis of weighted recursive random sums. We believe that these methods may be of independent interest in the analysis of more general weighted branching processes as well as in the analysis of algorithms

    Non-empirical hyper-generalized-gradient functionals constructed from the Lieb-Oxford bound

    Full text link
    A simple and completely general representation of the exact exchange-correlation functional of density-functional theory is derived from the universal Lieb-Oxford bound, which holds for any Coulomb-interacting system. This representation leads to an alternative point of view on popular hybrid functionals, providing a rationale for why they work and how they can be constructed. A similar representation of the exact correlation functional allows to construct fully non-empirical hyper-generalized-gradient approximations (HGGAs), radically departing from established paradigms of functional construction. Numerical tests of these HGGAs for atomic and molecular correlation energies and molecular atomization energies show that even simple HGGAs match or outperform state-of-the-art correlation functionals currently used in solid-state physics and quantum chemistry.Comment: v2: Major revison. Added information on relation to the gradient expansion and to local hybrids, improved discussion of size consistency and of performance relative to other functional

    How tight is the Lieb-Oxford bound?

    Full text link
    Density-functional theory requires ever better exchange-correlation (xc) functionals for the ever more precise description of many-body effects on electronic structure. Universal constraints on the xc energy are important ingredients in the construction of improved functionals. Here we investigate one such universal property of xc functionals: the Lieb-Oxford lower bound on the exchange-correlation energy, Exc[n]≥−C∫d3rn4/3E_{xc}[n] \ge -C \int d^3r n^{4/3}, where C≤CLO=1.68C\leq C_{LO}=1.68. To this end, we perform a survey of available exact or near-exact data on xc energies of atoms, ions, molecules, solids, and some model Hamiltonians (the electron liquid, Hooke's atom and the Hubbard model). All physically realistic density distributions investigated are consistent with the tighter limit C≤1C \leq 1. For large classes of systems one can obtain class-specific (but not fully universal) similar bounds. The Lieb-Oxford bound with CLO=1.68C_{LO}=1.68 is a key ingredient in the construction of modern xc functionals, and a substantial change in the prefactor CC will have consequences for the performance of these functionals.Comment: 10 pages, 3 figure
    • …
    corecore