154 research outputs found

    Unveiling the mono-rhamnolipid and di-rhamnolipid mechanisms of action upon plasma membrane models

    Get PDF
    Rhamnolipids (RLs) are biosurfactants with significant tensioactive and emulsifying properties. They are mainly composed by mono-RL and di-RL components. Although there are numerous studies concerning their molecular properties, information is scarce regarding the mechanisms by which each of the two components interacts with cell membranes. Herein, we performed phase-contrast and fluorescence microscopy experiments on plasma membrane models represented by giant-unilamellar-vesicles (GUVs) composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 2-[[(E,2S,3R)-1,3-dihydroxy-2-(octadecanoylamino) octadec-4-enyl]peroxy-hydroxyphosphoryl]oxyethyl-trimethylazanium (sphingomyelin, SM) and (3β)-cholest-5-en-3-ol (cholesterol, CHOL) (1:1:1 M ratio), which present liquid-order (Lo) liquid-disorder (Ld) phase coexistence, in the presence of either mono-RL or di-RL in 0.06–0.25 mM concentration range. A new method has been developed to determine area and volume of GUVs with asymmetrical shape and a kinetic model describing GUV-RL interaction in terms of two mechanisms, RL-insertion and pore formation, has been worked out. Results show that the insertion of mono-RL in the membrane outer leaflet is the dominant process with no pore formation and a negligible effect in modifying membrane permeability, but induces lipid mixing. Conversely, the di-RL-GUV interaction begins with the insertion mechanism and, as the time passes by, the pore formation process occurs. The analyses of di-RL show that the whole process is only relevant in the Ld phase with a higher extent to 0.25 mM than to 0.06 mM

    Magnetically controlled exciton transfer in hybrid quantum dot-quantum well nanostructures

    Get PDF
    A magnetophotoluminescence study of the carrier transfer with hybrid InAs/GaAs quantum dot(QD)-InGaAs quantum well (QW) structures is carried out where we observe an unsual dependence of the photoluminescence (PL) on the GaAs barrier thickness at strong magnetic field and excitation density. For the case of a thin barrier the QW PL intensity is observed to increase at the expense of a decrease in the QD PL intensity. This is attributed to changes in the interplane carrier dynamics in the QW and the wetting layer (WL) resulting from increasing the magnetic field along with changes in the coupling between QD excited states and exciton states in the QW and the WL

    Electrical control of glass-like dynamics in vanadium dioxide for data storage and processing

    Get PDF
    Metal–oxide–semiconductor junctions are the building blocks of modern electronics and can provide a variety of functionalities, from memory to computing. The technology, however, faces constraints in terms of further miniaturization and compatibility with post–von Neumann computing architectures. Manipulation of structural—rather than electronic—states could provide a path to ultrascaled low-power functional devices, but the electrical control of such states is challenging. Here we report electronically accessible long-lived structural states in vanadium dioxide that can provide a scheme for data storage and processing. The states can be arbitrarily manipulated on short timescales and tracked beyond 10,000 s after excitation, exhibiting features similar to glasses. In two-terminal devices with channel lengths down to 50 nm, sub-nanosecond electrical excitation can occur with an energy consumption as small as 100 fJ. These glass-like functional devices could outperform conventional metal–oxide–semiconductor electronics in terms of speed, energy consumption and miniaturization, as well as provide a route to neuromorphic computation and multilevel memories

    Interfacial Morphology Addresses Performance of Perovskite Solar Cells Based on Composite Hole Transporting Materials of Functionalized Reduced Graphene Oxide and P3HT

    Get PDF
    The development of novel hole transporting materials (HTMs) for perovskite solar cells (PSCs) that can enhance device's reproducibility is a largely pursued goal, even to the detriment of a very high efficiency, since it paves the way to an effective industrialization of this technology. In this work, we study the covalent functionalization of reduced graphene oxide (RGO) flakes with different organic functional groups with the aim of increasing the stability and homogeneity of their dispersion within a poly(3-hexylthiophene) (P3HT) HTM. The selected functional groups are indeed those recalling the two characteristic moieties present in P3HT, i.e., the thienyl and alkyl residues. After preparation and characterization of a number of functionalized RGO@P3HT blends, we test the two containing the highest percentage of dispersed RGO as HTMs in PSCs and compare their performance with that of pristine P3HT and of the standard Spiro-OMeTAD HTM. Results reveal the big influence of the morphology adopted by the single RGO flakes contained in the composite HTM in driving the final device performance and allow to distinguish one of these blends as a promising material for the fabrication of highly reproducible PSCs

    Pathway to an excitonic coherence

    Get PDF
    This paper discusses the combined effects of optical excitation power, interface roughness, lattice temperature, and applied magnetic fields on the spin-coherence of excitonic states in GaAs/AlGaAs multiple quantum wells. For low optical powers, at lattice temperatures between 4 K and 50 K, the scattering with acoustic phonons and short-range interactions appear as the main decoherence mechanisms. Statistical fluctuations of the band-gap however become also relevant in this regime and we were able to deconvolute them from the decoherence contributions. The circularly polarized magneto-photoluminescence unveils a non-monotonic tuning of the coherence for one of the spin components at low magnetic fields. This effect has been ascribed to the competition between short-range interactions and spin-flip scattering, modulated by the momentum relaxation time

    Subsequent mortality in survivors of Ebola virus disease in Guinea: a nationwide retrospective cohort study.

    Get PDF
    BACKGROUND: A record number of people survived Ebola virus infection in the 2013-16 outbreak in west Africa, and the number of survivors has increased after subsequent outbreaks. A range of post-Ebola sequelae have been reported in survivors, but little is known about subsequent mortality. We aimed to investigate subsequent mortality among people discharged from Ebola treatment units. METHODS: From Dec 8, 2015, Surveillance Active en ceinture, the Guinean national survivors' monitoring programme, attempted to contact and follow-up all survivors of Ebola virus disease who were discharged from Ebola treatment units. Survivors were followed up until Sept 30, 2016, and deaths up to this timepoint were recorded. Verbal autopsies were done to gain information about survivors of Ebola virus disease who subsequently died from their closest family members. We calculated the age-standardised mortality ratio compared with the general Guinean population, and assessed risk factors for mortality using survival analysis and a Cox proportional hazards regression model. FINDINGS: Of the 1270 survivors of Ebola virus disease who were discharged from Ebola treatment units in Guinea, information was retrieved for 1130 (89%). Compared with the general Guinean population, survivors of Ebola virus disease had a more than five-times increased risk of mortality up to Dec 31, 2015 (age-standardised mortality ratio 5·2 [95% CI 4·0-6·8]), a mean of 1 year of follow-up after discharge. Thereafter (ie, from Jan 1-Sept 30, 2016), mortality did not differ between survivors of Ebola virus disease and the general population. (0·6 [95% CI 0·2-1·4]). Overall, 59 deaths were reported, and the cause of death was tentatively attributed to renal failure in 37 cases, mostly on the basis of reported anuria. Longer stays (ie, equal to or longer than the median stay) in Ebola treatment units were associated with an increased risk of late death compared with shorter stays (adjusted hazard ratio 2·62 [95% CI 1·43-4·79]). INTERPRETATION: Mortality was high in people who recovered from Ebola virus disease and were discharged from Ebola treatment units in Guinea. The finding that survivors who were hospitalised for longer during primary infection had an increased risk of death, could help to guide current and future survivors' programmes and in the prioritisation of funds in resource-constrained settings. The role of renal failure in late deaths after recovery from Ebola virus disease should be investigated. FUNDING: WHO, International Medical Corps, and the Guinean Red Cross
    corecore