14 research outputs found
Microfabricated Reference Electrodes and their Biosensing Applications
Over the past two decades, there has been an increasing trend towards miniaturization of both biological and chemical sensors and their integration with miniaturized sample pre-processing and analysis systems. These miniaturized lab-on-chip devices have several functional advantages including low cost, their ability to analyze smaller samples, faster analysis time, suitability for automation, and increased reliability and repeatability. Electrical based sensing methods that transduce biological or chemical signals into the electrical domain are a dominant part of the lab-on-chip devices. A vital part of any electrochemical sensing system is the reference electrode, which is a probe that is capable of measuring the potential on the solution side of an electrochemical interface. Research on miniaturization of this crucial component and analysis of the parameters that affect its performance, stability and lifetime, is sparse. In this paper, we present the basic electrochemistry and thermodynamics of these reference electrodes and illustrate the uses of reference electrodes in electrochemical and biological measurements. Different electrochemical systems that are used as reference electrodes will be presented, and an overview of some contemporary advances in electrode miniaturization and their performance will be provided
Enhancement of technical value of oil palm (Elaeis guineensis Jacq.) waste trunk through modification with 1,3-dimethylol-4,5- dihydroxyethyleneurea (DMDHEU)
Malaysia is the biggest producer of palm oil in the world. The production generates over 70 metric tons of waste trunks per hectare during replantation. Such an abundant feedstock should be considered a valuable raw material rather than an agro-waste. An approach for enhancement of low density trunks through the treatment with 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) was investigated. The treatment resulted in a great improvement in the properties of the material: 45 % density gain, water absorption and thickness swelling reduced by 48 and 43 %, respectively, 2.3-fold increase in hardness as well as 3.8-fold and 3.6-fold increase in bending strength and modulus of elasticity, respectively, were observed. Thus, enhancement in the physical and mechanical performance of the material as well as the increased aesthetic value due to the color changes proved the approach to be effective for the conversion of waste biomass to new products