4 research outputs found

    METHODOLOGY STUDY AND ANALYSIS OF MAGNESIUM ALLOY METAL MATRIX COMPOSITES

    Get PDF
    ABSTRACT Magnesium alloys have been increasingly used in the automotive and aircraft industry in recent years due to their Light weight Magnesium alloys have excellent specific strength and stiffness, exceptional dimensional stability, high damping capacity, and high recycle ability. Magnesium and its alloys are becoming widely recognized as playing an increasingly important role in automotive, aircraft, and electronic consumer products. Magnesium alloy metal matrix composite (MMC) containing 14 vol. % Saffil fibres. The squeeze casting process was used to produce the composites and the process variables evaluated were applied pressure, from 0.1 MPa to 120 MPa, and preform temperature from 250 °C to 750 °C

    Welding

    Get PDF
    Friction welding method is one of the most simple, economical and highly productive methods in joining similar and dissimilar metals. It is widely used in the automotive, aircraft and aerospace industrial applications. For many applications it is often necessary to join aluminium (6061) to make finished part. In this project the main aim is to weld the small thickness of aluminum (6061) plates for that friction welding machine used is of higher cost. Here the aim is reduce the cost of friction welding machine with simple parts like three phase A.C induction motor, bush, frame stand, friction tool, universal vice, vertical moving bed, horizontal moving bed, etc. The result expected would be of same strength as that of old friction welding machine. It is very easy and at same time production time is very much reduced. This machine is best suitable for mass production

    Quality of Service Routing in Manet Using a Hybrid Intelligent Algorithm Inspired by Cuckoo Search

    No full text
    A hybrid computational intelligent algorithm is proposed by integrating the salient features of two different heuristic techniques to solve a multiconstrained Quality of Service Routing (QoSR) problem in Mobile Ad Hoc Networks (MANETs) is presented. The QoSR is always a tricky problem to determine an optimum route that satisfies variety of necessary constraints in a MANET. The problem is also declared as NP-hard due to the nature of constant topology variation of the MANETs. Thus a solution technique that embarks upon the challenges of the QoSR problem is needed to be underpinned. This paper proposes a hybrid algorithm by modifying the Cuckoo Search Algorithm (CSA) with the new position updating mechanism. This updating mechanism is derived from the differential evolution (DE) algorithm, where the candidates learn from diversified search regions. Thus the CSA will act as the main search procedure guided by the updating mechanism derived from DE, called tuned CSA (TCSA). Numerical simulations on MANETs are performed to demonstrate the effectiveness of the proposed TCSA method by determining an optimum route that satisfies various Quality of Service (QoS) constraints. The results are compared with some of the existing techniques in the literature; therefore the superiority of the proposed method is established

    Quality of Service Routing in Manet Using a Hybrid Intelligent Algorithm Inspired by Cuckoo Search

    No full text
    A hybrid computational intelligent algorithm is proposed by integrating the salient features of two different heuristic techniques to solve a multiconstrained Quality of Service Routing (QoSR) problem in Mobile Ad Hoc Networks (MANETs) is presented. The QoSR is always a tricky problem to determine an optimum route that satisfies variety of necessary constraints in a MANET. The problem is also declared as NP-hard due to the nature of constant topology variation of the MANETs. Thus a solution technique that embarks upon the challenges of the QoSR problem is needed to be underpinned. This paper proposes a hybrid algorithm by modifying the Cuckoo Search Algorithm (CSA) with the new position updating mechanism. This updating mechanism is derived from the differential evolution (DE) algorithm, where the candidates learn from diversified search regions. Thus the CSA will act as the main search procedure guided by the updating mechanism derived from DE, called tuned CSA (TCSA). Numerical simulations on MANETs are performed to demonstrate the effectiveness of the proposed TCSA method by determining an optimum route that satisfies various Quality of Service (QoS) constraints. The results are compared with some of the existing techniques in the literature; therefore the superiority of the proposed method is established
    corecore